Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[LUdecomp] - LU decomposition of a matrix
Calling Sequence
LUdecomp(A)
LUdecomp(A, arg2, arg3, ...)
LUdecomp(A, P='p', L='l', U='u' , U1='u1', R='r', rank='ran', det='d')
Parameters
A
-
rectangular matrix
arg.i
(optional) of the form name=val
P='p'
(optional) the pivot factor
L='l'
(optional) the unit lower triangular factor
U='u'
(optional) the upper triangular factor
U1='u1'
(optional) the modified U factor
R='r'
(optional) the row-reduced factor
rank='ran'
(optional) the rank of A
det='d'
(optional) the determinant of U1
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The routine LUdecomp computes both the traditional LU decomposition and a modified PLU1R decomposition of the matrix A. It returns U.
For matrices of floating-point entries, a partial (row) pivoting method is used. For symbolic computation, pivoting is done only when a leading entry is zero. The pivot (permutation) matrix is returned as P.
The basic decomposition generates a square unit lower triangular L factor and an upper triangular U factor with the same dimensions as A so that A = P*L*U.
The decomposition further factors U into U1*R where U1 is square upper triangular and R is the unique reduced row-echelon form of the matrix A. In this case A = P*L*U1*R.
The det parameter is defined to be the determinant of the U1 factor. This is non-zero for all matrices. When A has full rank, this will coincide with the determinant of A.
The rank parameter will be the rank of A. This will be of questionable value if A is composed of floating-point values and is ill-conditioned.
U1 is assumed to be non-singular. The matrix R, i.e. the row-echelon factor of A, will only be correct if this is the case. If A has parameters in its entries, and for some values of the parameters det(U1) = 0, then the row-echelon form must be recomputed for these values of the parameters.
Note that this paper names the U1 factor simply U.
The command with(linalg,LUdecomp) allows the use of the abbreviated form of this command.
Examples
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead
show the results
verify the decomposition (p is the identity).
det(u1) = k*(4+k) so u1 is singular when k=-4 or k=0, we investigate these separately
and floating point gaussian elimination
See Also
linalg(deprecated)[backsub], linalg(deprecated)[gausselim], linalg(deprecated)[gaussjord], LinearAlgebra
References
Corless, Robert M.; Jeffrey, David; and Nerenberg, M. A. H. "The Row Echelon Decomposition of a Matrix." University of Western Ontario Tech Report AM-91-01, Department of Applied Mathematics, 1991.
Download Help Document