Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geometry[Apollonius] - find the Apollonius circles of three given circles
Calling Sequence
Apollonius(c1, c2, c3)
Parameters
c1, c2, c3
-
three circles
Description
The problem of constructing, in a given plane, a circle tangent to three given circles. The circle representing the solution of this problem is known as Apollonius circle. The problem was named after Apollonius of Perge (3rd- century B.C.)
The routine returns a list of Apollonius circles. In general, there are eight circles.
Note that the coordinates of the centers and the radii of the circles must be numeric.
The command with(geometry,Apollonius) allows the use of the abbreviated form of this command.
Examples
See Also
geometry[circle], geometry[draw]
Download Help Document