Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geom3d[stellate] - define a stellation of a given polyhedron
Calling Sequence
stellate(gon, core, n)
Parameters
gon
-
the name of the stellated polyhedron to be created
core
the core polyhedron
n
non-negative integer
Description
The core of a star-polyhedron or compound is the largest convex solid that can be drawn inside it, and the case is the smallest convex solid that can contain it.
The compound or star-polyhedron may be constructed either by stellating its core, or by faceting its case.
In order to stellate a polyhedron, one has to extend its faces symmetrically until they again form a polyhedron. To investigate all possibilities, we consider the set of lines in which the plane of a particular face would be cut by all other faces ( sufficiently extended), and try to select regular polygons bounded by sets of these lines.
Maple currently supports stellation of the five Platonic solids and the two quasi-regular polyhedra (the cuboctahedron and the icosidodecahedron).
tetrahedron, cube:
the only lines are the faces itself. Hence, there is only one possible value of n, namely 0.
octahedron:
possible values of n are 0, 1 (the core octahedron and the stella octangula).
dodecahedron:
4 possible values of n: 0 to 3 (the core dodecahedron, the small stellated dodecahedron, the great stellated dodecahedron and the great dodecahedron).
icosahedron:
59 possible values of n: 0 to 58.
cuboctahedron:
5 possible values of n: 0 to 4.
icosidodecahedron:
19 possible values of n: 0 to 18.
To access the information relating to a stellated polyhedron gon, use the following function calls:
center(gon)
returns the center of the core polyhedron core.
faces(gon)
returns the faces of gon, each face is represented as a list of coordinates of its vertices.
form(gon)
returns the form of gon.
schlafli(gon)
returns the ``Schlafli'' symbol of gon.
vertices(gon)
returns the coordinates of vertices of gon.
Examples
Define the 22-nd stellation of an icosahedron with center (1,1,1) radius 2
Plotting:
See Also
geom3d[Archimedean], geom3d[polyhedra], geom3d[QuasiRegularPolyhedron], geom3d[RegularPolyhedron]
Download Help Document