Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geom3d[RadicalPlane] - find the radical plane of two given spheres
geom3d[RadicalLine] - find the radical line of three given spheres
geom3d[RadicalCenter] - find the radical center of four given spheres
Calling Sequence
RadicalPlane(p1, s1, s2)
RadicalLine(p1, s1, s2, s3)
RadicalCenter(p1, s1, s2, s3, s4)
Parameters
p
-
name
s1, s2, s3, s4
spheres
Description
The locus of points which have the same power with respect to the two given spheres s1, s2 is a plane called radical plane.
Let us introduce a third sphere s3. Now we have three radical planes that form a pencil whose axis is the straight line. This line is called the radical line of the three sphere.
Now add a fourth sphere s4, and we have four radical lines. These four lines are clearly concurrent at the radical center.
Examples
Define two spheres s1, s2
Find the radical plane of s1 and s2
Simple check:
Generate a randpoint point on the radical plane:
The power of point P with respect to two spheres s1 and s2 must be the same:
Plotting:
Find the radical line of three spheres:
Warning, assume that the parameter in the parametric equations is _t
Find the radical center of four given spheres:
See Also
geom3d[sphere]
Download Help Document