Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geom3d[QuasiRegularPolyhedron] - define a quasi-regular polyhedron
Calling Sequence
QuasiRegularPolyhedron(gon, sch, o, r)
cuboctahedron(gon, o, r)
icosidodecahedron(gon, o, r)
Parameters
gon
-
the name of the polyhedron to be created
sch
Schlafli symbol
o
point
r
positive number, an equation
Description
A quasi-regular polyhedron is defined as having regular faces, while its vertex figures, though not regular, are cyclic and equiangular (that is, has alternate sides and can be inscribed in circles).
There are two quasi-regular polyhedra: cuboctahedron and icosidodecahedron.
In Maple, one can define a quasi-regular polyhedron by using the command QuasiRegularPolyhedron(gon, sch, o, r) where gon is the name of the polyhedron to be defined, sch the Schlafli symbol, o the center of the polyhedron.
When r is a positive number, it specifies the radius of the circum-sphere. When r is an equation, the left-hand side is one of radius, side, or mid_radius, and the right-hand side specifies the radius of the circum-sphere, the side, or the mid-radius (respectively) of the quasi-regular polyhedron to be constructed.
The Schlafli symbol can be one of the following:
Maple's Schlafli
Polyhedron type
[[3],[4]]
cuboctahedron
[[3],[5]]
icosidodecahedron
Another way to define a quasi-regular polyhedron is to use the command PolyhedronName(gon, o, r) where PolyhedronName is either cuboctahedron or icosidodecahedron.
To access the information relating to a quasi-regular polyhedron gon, use the following function calls:
center(gon)
returns the center of the circum-sphere of gon.
faces(gon)
returns the faces of gon, each face is represented
as a list of coordinates of its vertices.
form(gon)
returns the form of gon.
radius(gon)
returns the radius of the circum-sphere of gon.
schlafli(gon)
returns the Schlafli symbol of gon.
sides(gon)
returns the length of the edges of gon.
vertices(gon)
returns the coordinates of vertices of gon.
Examples
Define an icosidodecahedron with center (0,0,0), radius of the circum-sphere 1
Access information relating to the icosidodecahedron t:
Define a cuboctahedron with center (1,1,1), radius sqrt(2)
See Also
geom3d[Archimedean], geom3d[polyhedra], geom3d[RegularPolyhedron], geom3d[stellate]
Download Help Document