Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
factors - factor a multivariate polynomial
Calling Sequence
factors(a)
factors(a, K)
Parameters
a
-
multivariate polynomial
K
field extension over which to factor
Description
The factors command computes the factorization of a multivariate polynomial over the rationals, an algebraic number field, and with real or complex numeric coefficients.
Unlike the factor function where the input is any expression and the output is a product of sums in the general case, the input to the factors function must be a polynomial or a rational function, and the output is a data structure more suitable for programming purposes.
The factorization is returned in the form where where each (the factor) is a unit normal irreducible polynomial and each (its multiplicity) is a positive integer.
The call factors(a) factors over the field implied by the coefficients present: thus, if all the coefficients are rational, then the polynomial is factored over the rationals.
If the second argument K is the keyword real or complex, a floating-point factorization is performed over R and C respectively. Note, at present this is only implemented for univariate polynomials.
The call factors(a, K) factors the polynomial a over the algebraic number field defined by K. K must be a single RootOf, a list or set of RootOfs, a single radical, or a list or set of radicals.
Examples
The following is an example that has a rational function as input.
See Also
AFactors, factor, Factors, ifactors, PolynomialTools[Split], roots, sqrfree
Download Help Document