Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
diffalg[is_orthonomic] - test if a characterizable differential ideal is presented by an orthonomic system of equations
Calling Sequence
is_orthonomic (J)
Parameters
J
-
characterizable differential ideal
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The command is_orthonomic determines if the characteristic set defining J is orthonomic.
Characterizable differential ideal are constructed by using the Rosenfeld_Groebner command.
A characteristic set is orthonomic when its initials and separants belong to the ground field. It is the case if inequations(J) is empty.
Characterizable differential ideals given by orthonomic characteristic sets are prime differential ideal. The function Rosenfeld_Groebner recognizes and can take advantage of this fact.
If J is a radical differential ideal represented by a list of characterizable differential ideals, then the function is mapped on all its components.
Examples
See Also
diffalg(deprecated), diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)/Rosenfeld_Groebner, DifferentialAlgebra[Is]
Download Help Document