Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
combinat[numbcomb] - Count the number of combinations
Calling Sequence
numbcomb(n, m)
Parameters
n
-
list or set of expressions or a non-negative integer
m
(optional) non-negative integer
Description
If n is a list or set, then numbcomb counts the combinations of the elements of n taken m at a time. If m is not given, then all combinations are considered. If n is a non-negative integer, it is interpreted in the same way as a set of the first n integers.
Note that the result of numbcomb(n, m) is equivalent to . However, this number is computed either by using binomial coefficients or by using a generating function method.
Additionally, note that if n is a non-negative integer, the result of numbcomb(n, m) is identical to that of .
The count of combinations takes into account duplicates in n. In the case where there are no duplicates, the count is given by the formula if m is not specified, or by the formula if m is specified. If there are duplicates in the list, then the generating function is used.
The command with(combinat,numbcomb) allows the use of the abbreviated form of this command.
Examples
See Also
binomial, combinat[choose], combinat[numbperm], nops
Download Help Document