Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[VectorCalculus][PositionVector] - creates a position vector with specified components and a coordinate system
Calling Sequence
PositionVector(comps)
PositionVector(comps, c)
Parameters
comps
-
list(algebraic); the components of the Position Vector
c
name or name[name, name, ...]; specify the coordinate system possibly indexed by the coordinate names
Description
The PositionVector function constructs a position Vector, one of the four principal Vector data structures of the Student[VectorCalculus] package. Note that the Student[VectorCalculus] and the VectorCalculus packages share the same Vector data structures.
For details on the differences between the four principal Vector data structures, namely, position Vectors, rooted Vectors, free Vectors, and vector fields, see VectorCalculus,Details.
The call PositionVector(comps, c) returns a position Vector in a cartesian enveloping space with components interpreted using the corresponding transformations from c coordinates to cartesian coordinates.
If no coordinate system argument is present, the components of the position Vector are interpreted in the current coordinate system (see SetCoordinates).
The position Vector is a cartesian Vector rooted at the origin. This has no mathematical meaning in non-cartesian coordinates, so the c parameter only changes the way the components are interpreted. Note that the Student[VectorCalculus] package only supports the cartesian, polar, spherical and cylindrical coordinate systems.
If comps has indeterminates representing parameters, the position Vector serves to represent a curve or a surface.
To differentiate a curve or a surface specified via a position Vector, use diff.
To evaluate a vector field along a curve or a surface given by a position Vector, use evalVF.
A curve or surface given by a position Vector can be plotted using PlotPositionVector.
The position Vector is displayed in column notation in the same manner as rooted Vectors are, as a position Vector can be interpreted as a Vector that is (always) rooted at the cartesian origin.
A position Vector cannot be mapped to a basis different than cartesian coordinates. In order to see how the same position Vector would be described in other coordinate systems, use GetPVDescription.
Standard binary operations between position Vectors like +/-, *, Dot Product, and Cross Product are defined.
Binary operations between position Vectors and vector fields, free Vectors or rooted Vectors are not defined; however, a position Vector can be converted to a free Vector in cartesian coordinates via ConvertVector.
Examples
Position Vectors
Curves
Surfaces
See Also
Student[VectorCalculus], Student[VectorCalculus][diff], Student[VectorCalculus][evalVF], Student[VectorCalculus][PlotPositionVector], Student[VectorCalculus][RootedVector], Student[VectorCalculus][Vector], Student[VectorCalculus][VectorField]
Download Help Document