Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Statistics[TwoSamplePairedTTest] - apply the paired t-test for population means
Calling Sequence
TwoSamplePairedTTest(X1, X2, beta, options)
Parameters
X1
-
rtable; first data sample
X2
rtable; second data sample
beta
realcons; the test value for the difference between the two means
options
(optional) equation(s) of the form option=value where option is one of alternative, confidence, ignore, output, weights1 or weights2; specify options for the TwoSamplePairedTTest function
Description
The TwoSamplePairedTTest function computes the paired t-test upon datasets X1 and X2 (which have been constructed by paired sampling). This calculation is used to determine the significance of the difference between sample means and an assumed difference in population means when the standard deviation of the population is unknown.
The first parameter X1 is the first data sample to use in the analysis.
The second parameter X2 is the second data sample to use in the analysis.
The third parameter beta is the assumed difference in population means (assumed population mean of X1 minus the assumed population mean of X2), specified as a real constant.
Options
The options argument can contain one or more of the options shown below.
alternative='twotailed', 'lowertail', or 'uppertail'
This option is used to specify the type or interval used in the analysis, or similarly, the alternative hypothesis to consider when performing the analysis.
confidence=float
This option is used to specify the confidence level of the interval and must be a floating-point value between 0 and 1. By default this is set to 0.95.
ignore=truefalse
This option is used to specify how to handle non-numeric data. If ignore is set to true all non-numeric items in data will be ignored.
output='report', 'statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis', or list('statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis')
This option is used to specify the desired format of the output from the function. If 'report' is specified then a module containing all output from this test is returned. If a single parameter name is specified other than 'report' then that quantity alone is returned. If a list of parameter names is specified then a list containing those quantities in the specified order will be returned.
weights=rtable
Vector of weights (one-dimensional rtable). If these weights are given, the TwoSamplePairedTTest function will scale each data point in X1 and X2 to have given weight. Note that the weights provided must have type realcons and the results are floating-point, even if the problem is specified with exact values. Both the data array and the weights array must have the same number of elements.
Notes
This test generates a complete report of all calculations in the form of a userinfo message. In order to access this report, specify infolevel[Statistics] := 1.
Examples
Specify the data sample.
Calculate the paired t-test on an array of values.
Standard T-Test with Paired Samples ----------------------------------- Null Hypothesis: Sample drawn from populations with difference of means equal to 1 Alt. Hypothesis: Sample drawn from population with difference of means not equal to 1 Sample size: 10 Difference in means: -0.8 Difference std. dev.: 1.31656 Distribution: StudentT(9) Computed statistic: -4.32346 Computed pvalue: 0.00192341 Confidence interval: -1.7418108909393 .. .141810890939296 (difference of population means) Result: [Rejected] There exists statistical evidence against the null hypothesis
Calculate the lower tail paired t-test.
Standard T-Test with Paired Samples ----------------------------------- Null Hypothesis: Sample drawn from populations with difference of means greater than 1 Alt. Hypothesis: Sample drawn from population with difference of means less than 1 Sample size: 10 Difference in means: -0.8 Difference std. dev.: 1.31656 Distribution: StudentT(9) Computed statistic: -4.32346 Computed pvalue: 0.000961706 Confidence interval: -infinity .. -.0368142919477125 (difference of population means) Result: [Rejected] There exists statistical evidence against the null hypothesis
Calculate the upper tail paired t-test.
Standard T-Test with Paired Samples ----------------------------------- Null Hypothesis: Sample drawn from populations with difference of means less than 1 Alt. Hypothesis: Sample drawn from population with difference of means greater than 1 Sample size: 10 Difference in means: -0.8 Difference std. dev.: 1.31656 Distribution: StudentT(9) Computed statistic: -4.32346 Computed pvalue: 0.999038 Confidence interval: -1.56318570805229 .. infinity (difference of population means) Result: [Accepted] There is no statistical evidence against the null hypothesis
See Also
Statistics, Statistics[Computation], Statistics[Tests][OneSampleTTest], Statistics[Tests][TwoSampleTTest]
References
Kanji, Gopal K. 100 Statistical Tests. London: SAGE Publications Ltd., 1994.
Sheskin, David J. Handbook of Parametric and Nonparametric Statistical Procedures. London: CRC Press, 1997.
Download Help Document