Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Statistics[OneSampleChiSquareTest] - apply the one sample chisquare-test for the population standard deviation
Calling Sequence
OneSampleChiSquareTest(X, sigma0, test_options)
OneSampleChiSquareTest[SampleSize](widthratio, samplesize_options)
Parameters
X
-
rtable; data sample
sigma0
realcons; the test value for the standard deviation
test_options
(optional) equation(s) of the form option=value where option is one of alternative, confidence, ignore, output, or weights; specify options for the OneSampleChiSquareTest function
widthratio
realcons; the ratio between the upper bound on the confidence interval and the lower bound on the confidence interval
samplesize_options
(optional) equation(s) of the form option=value where option is one of confidence or iterations; specify options for the OneSampleChiSquareTest[SampleSize] utility function
Description
The OneSampleChiSquareTest function computes the one sample chisquare-test upon a dataset X. This calculation is used to determine the significance of the difference between the sample standard deviation and an assumed population standard deviation.
The first parameter X is the data sample to use in the analysis.
The second parameter sigma0 is the assumed population standard deviation, specified as a real constant.
The OneSampleChiSquareTest[SampleSize] utility computes the number of samples required in a data set in order to get a confidence interval with the specified width ratio using this test.
The first parameter of the utility, widthratio, specifies the ratio between the upper bound on the confidence interval and the lower bound on the confidence interval. This value must be strictly greater than 1.
Test Options
The test_options argument can contain one or more of the options shown below.
alternative='twotailed', 'lowertail', or 'uppertail'
This option is used to specify the type or interval used in the analysis, or similarly, the alternative hypothesis to consider when performing the analysis.
confidence=float
This option is used to specify the confidence level of the interval and must be a floating-point value between 0 and 1. By default this is set to 0.95.
ignore=truefalse
This option is used to specify how to handle non-numeric data. If ignore is set to true all non-numeric items in data will be ignored.
output='report', 'statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis', or list('statistic', 'pvalue', 'confidenceinterval', 'distribution', 'hypothesis')
This option is used to specify the desired format of the output from the function. If 'report' is specified then a module containing all output from this test is returned. If a single parameter name is specified other than 'report' then that quantity alone is returned. If a list of parameter names is specified then a list containing those quantities in the specified order will be returned.
weights=rtable
Vector of weights (one-dimensional rtable). If weights are given, the OneSampleChiSquareTest function will scale each data point to have given weight. Note that the weights provided must have type realcons and the results are floating- point, even if the problem is specified with exact values. Both the data array and the weights array must have the same number of elements.
Sample Size Options
The samplesize_options argument can contain one or more of the options shown below.
iterations=posint
This option specifies the maximum number of iterations to process when attempting to calculate the number of samples required. By default, this is set to 100.
Notes
This test generates a complete report of all calculations in the form of a userinfo message. In order to access this report, specify infolevel[Statistics] := 1.
The chisquare-test can be extended to consider the ratio of two population variances, which is available as the F-test.
Examples
Specify the data sample.
Calculate the one sample chisquare-test on an array of values.
Chi-Square Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with standard deviation equal to 7 Alt. Hypothesis: Sample drawn from population with standard deviation not equal to 7 Sample size: 10 Sample standard dev.: 4.24788 Distribution: ChiSquare(9) Computed statistic: 3.31429 Computed pvalue: 0.0989571 Confidence interval: 2.92183817955115 .. 7.75496405266393 (population standard deviation) Result: [Accepted] There is no statistical evidence against the null hypothesis
Calculate the lower tail chisquare-test.
Chi-Square Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with standard deviation greater than 7 Alt. Hypothesis: Sample drawn from population with standard deviation less than 7 Sample size: 10 Sample standard dev.: 4.24788 Distribution: ChiSquare(9) Computed statistic: 3.31429 Computed pvalue: 0.0494785 Confidence interval: 0 .. 6.98859392393519 (population standard deviation) Result: [Rejected] There exists statistical evidence against the null hypothesis
Calculate the upper tail chisquare-test.
Chi-Square Test on One Sample ----------------------------- Null Hypothesis: Sample drawn from population with standard deviation less than 7 Alt. Hypothesis: Sample drawn from population with standard deviation greater than 7 Sample size: 10 Sample standard dev.: 4.24788 Distribution: ChiSquare(9) Computed statistic: 3.31429 Computed pvalue: 0.950521 Confidence interval: 3.09817508200398 .. infinity (population standard deviation) Result: [Accepted] There is no statistical evidence against the null hypothesis
Determine the number of samples required to compute a confidence interval with width ratio equal to 1.5.
See Also
Statistics, Statistics[Computation], Statistics[Tests][TwoSampleFTest]
References
Kanji, Gopal K. 100 Statistical Tests. London: SAGE Publications Ltd., 1994.
Sheskin, David J. Handbook of Parametric and Nonparametric Statistical Procedures. London: CRC Press, 1997.
Download Help Document