Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Statistics[ExponentialSmoothing] - apply exponential smoothing to a data set
Calling Sequence
ExponentialSmoothing(X, lambda, options)
Parameters
X
-
data set
lambda
smoothing constant
options
(optional) equation(s) of the form option=value where option is one of ignore, or initial; specify options for the ExponentialSmoothing function
Description
The ExponentialSmoothing function computes exponentially weighted moving averages for the original observations using the formula
where N is the number of elements in A and by default. This is useful for smoothing the data, thus eliminating cyclic and irregular patterns and therefore enhancing the long term trends.
The first parameter X is a single data sample - given as a Vector or list. Each value represents an individual observation.
The second parameter lambda is the smoothing constant, which can be any real number between 0 and 1.
Options
The options argument can contain one or more of the options shown below. These options are described in more detail in the Statistics[Mean] help page.
ignore=truefalse -- This option is used to specify how to handle non-numeric data. If ignore is set to true all non-numeric items in data will be ignored.
initial=deduce, or realcons -- This option is used to specify the initial value for the smoothed observations. By default, the first of the original observations is taken as the initial value.
Examples
See Also
Statistics, Statistics[DataSmoothing], Statistics[LinearFilter], Statistics[MovingAverage]
Download Help Document