Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RootFinding[Analytic] - zeros of an analytic function in one variable
RootFinding[AnalyticZerosFound] - zeros of an analytic function in one variable
Calling Sequence
Analytic(f, z, a+c*I..b+d*I, ...)
Analytic(f, z, re=a..b, im=c..d, ...)
AnalyticZerosFound()
Parameters
f
-
an analytic function of z (or an equation defining such)
z
(optional) an unknown
a, b, c, d
real constants
Description
For an analytic function of z, Analytic attempts to find all complex zeros of within the rectangular region , in the complex plane. It may also find some zeros outside but close to the boundary of the region.
Setting of infolevel[RootFinding:-Analytic] to be between 1 and 7 will result in detailed information concerning the solving process being displayed.
The AnalyticZerosFound() calling sequence returns a sequence of the zeros which have been located. These may be accessed after Analytic returns, or if its computation is interrupted.
Options
The remaining arguments are interpreted as options.
digits=n
Set Digits := n; for the purpose of the calculation. Thus the accuracy of the zeros computed is usually less than n digits since only n digits is used for the calculation. The default is the value of Digits already set by the user; the minimum is 5. If hardware floats are in use, this default may be increased to a maximum of trunc(evalhf(Digits)).
iterations=n
The number of iterations of Newton's method to be applied for each starting point. The default is 50.
continue
Continue with an interrupted calculation, remembering already found zeros. This option may also be used to change the boundaries of the region without losing already found zeros. This option may only be used with the same function and variable as the original call.
plot
Return a plot of the zeros instead of the zeros. Note, the zeros are still available to the user through the command RootFinding:-AnalyticZerosFound(), and are available until the routine RootFinding:-Analytic is once again used.
and
When plotting, the zeros will be reduced modulo in the real direction and modulo in the imaginary direction. With the option 'modulo' they will be reduced to the region and ; With 'modulo_s' they will be reduced to the region , .
extra
For plotting purposes, remember the rectangular subregions in which the zeros were isolated, as well as the traces of the Newton iterations. These will appear when the zeros are plotted.
viewall
For plotting purposes, view the entire specified region. Do not restrict the viewing region to the area where zeros are found.
Examples
The following examples may be executed in Maple.
See Also
fsolve, plot, RootFinding
Download Help Document