Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ParametricSystemTools][ComplexRootClassification] - compute a classification of the complex roots of a polynomial system depending on parameters
Calling Sequence
ComplexRootClassification(F, d, R)
ComplexRootClassification(F, H, d, R)
ComplexRootClassification(CS, d, R)
Parameters
F
-
list of polynomials
H
d
number of parameters
R
polynomial ring
CS
constructible set
Description
The integer d must be positive and smaller than the number of variables.
The characteristic of R must be zero and the last d variables of R are regarded as parameters.
For a parametric algebraic system, this command computes all the possible numbers of solutions of this system together with the corresponding necessary and sufficient conditions on its parameters.
More precisely, let V be the variety defined by F. The command ComplexRootClassification(F, d, R) returns a classification of the complex roots of F depending on parameters, that is, a finite partition P of the parameter space into constructible sets such that above each part, the number of solutions of V is either infinite or constant.
If a constructible set CS is specified, the representing regular systems of CS must be square-free. The function call ComplexRootClassification(CS, d, R) returns a classification of the points of the constructible set CS, that is, a finite partition P of the parameter space into constructible sets such that above each part, the number of solutions of CS is either infinite or constant.
If H is specified, let be the variety defined by the product of polynomials in H. The command ComplexRootClassification(F, H, d, R) returns a classification of the points of the constructible set V-W depending on parameters.
Examples
The computation below shows that the input parametric system can have 1 solution or 2 distinct solutions. The corresponding conditions on the parameters are given by constructible sets.
These constructible sets are printed below.
See Also
ComprehensiveTriangularize, ConstructibleSetTools, ParametricSystemTools, RealRootClassification, RegularChains
Download Help Document