Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ConstructibleSetTools][IsContained] - check whether or not a constructible set is a subset of another one
RegularChains[SemiAlgebraicSetTools][IsContained] - check whether or not a semi-algebraic set is a subset of another one
Calling Sequence
IsContained(cs1, cs2, R)
IsContained(lrsas1, lrsas2, R)
Parameters
cs1, cs2
-
constructible sets
lrsas1, lrsas2
lists of regular semi-algebraic systems
R
polynomial ring
Description
The command IsContained(cs1, cs2, R) returns true if cs1 is contained in cs2; otherwise false. The polynomial ring may have characteristic zero or a prime characteristic. cs1 and cs2 must be defined over the same ring R.
The command IsContained('lrsas1', 'lrsas2', 'R') returns true if lrsas1 is contained in lrsas2; otherwise false. The polynomial ring must have characteristic zero. lrsas1 and lrsas2 must be defined over the same ring R.
A constructible set is encoded as an constructible_set object, see the type definition in ConstructibleSetTools.
A semi-algebraic set is encoded by a list of regular_semi_algebraic_system, see the type definition in RealTriangularize.
This command is available once RegularChains[ConstructibleSetTools] submodule or RegularChains[SemiAlgebraicSetTools] submodule have been loaded. be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][IsContained] or RegularChains[SemiAlgebraicSetTools][IsContained].
Compatibility
The RegularChains[SemiAlgebraicSetTools][IsContained] command was introduced in Maple 16.
The lrsas1 parameter was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
First, define the polynomial ring and two polynomials of .
Using the GeneralConstruct function and adding one inequality, you can build a constructible set. By and , two constructible sets cs1 and cs2 are different.
Use the IsContained function to check if one is contained in another.
The empty constructible set is contained in any other constructible set.
Semi-algebraic case:
See Also
Complement, ConstructibleSet, ConstructibleSetTools, Difference, EmptyConstructibleSet, Intersection, RealTriangularize, RegularChains, Union
References
Chen, C.; Golubitsky, O.; Lemaire, F.; Moreno Maza, M.; and Pan, W. "Comprehensive Triangular Decomposition". Proc. CASC 2007, LNCS, Vol. 4770: 73-101. Springer, 2007.
Chen, C.; Davenport, J.-D.; Moreno Maza, M.; Xia, B.; and Xiao, R. "Computing with semi-algebraic sets represented by triangular decomposition". Proceedings of 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, pp. 75--82, 2011.
Download Help Document