Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[NormalForm] - normal form of a polynomial with respect to a regular chain
Calling Sequence
NormalForm(p, rc, R)
Parameters
R
-
polynomial ring
rc
regular chain of R
Description
The function call NormalForm(p, rc, R) returns the normal form of p with respect to rc, that is, a rational polynomial such that equals modulo the ideal generate by rc and such that is reduced with respect to rc.
For this call, the regular chain rc must be strongly normalized.
The algorithm is based on that of SparsePseudoRemainder.
Please, refer to the paper of Boulier and Lemaire in Proc. ISSAC 2000 for detail about strongly normalized regular chains and normal forms.
This command is part of the RegularChains package, so it can be used in the form NormalForm(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[NormalForm](..).
The commands NormalFormDim0 and ReduceCoefficientsDim0 implement asymptotically fast algorithms for computing the normal form of a polynomial with respect to a zero-dimensional regular chain.
Examples
The SparsePseudoRemainder(p, rc, R) often returns a multiple of NormalForm(p, rc, R)
See Also
Empty, IsStronglyNormalized, ListConstruct, NormalFormDim0, PolynomialRing, ReduceCoefficientsDim0, RegularChains, SparsePseudoRemainder
Download Help Document