Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[IsRegular] - check if a polynomial is regular modulo a regular chain
Calling Sequence
IsRegular(p, rc, R)
Parameters
p
-
polynomial of R
rc
regular chain of R
R
polynomial ring
Description
The command IsRegular(in_p, in_rc, R) returns true if and only if p is regular modulo rc, that is if and only if p is not a zero-divisor modulo the saturated ideal of rc.
This command is part of the RegularChains package, so it can be used in the form IsRegular(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[IsRegular](..).
Examples
The fact that the list zdl is not empty means that there are cases, modulo which, p is zero. This is clear from the definition of p and rc.
Since q is regular with respect to T and since every variable q is algebraic with respect to T, we can compute the inverse of q modulo T.
For each case where r is regular modulo rc, we can compute its inverse.
See Also
Chain, ChainTools, Empty, Equations, Inverse, PolynomialRing, RegularChains, Regularize, RegularizeDim0, RegularizeInitial
Download Help Document