Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[FastArithmeticTools][RegularizeDim0] - Test the regularity of a polynomial w.r.t. a 0-dim regular chain
Calling Sequence
RegularizeDim0(f, rc, R)
RegularizeDim0(f, rc, R, isSquareFree)
Parameters
R
-
a polynomial ring
f
a polynomial of R
rc
a regular chain of R
isSquareFree
boolean value (optional)
Description
Returns a list of pairs where is a polynomial and is a regular chain such that the regular chains form a triangular decomposition of rc in the sense of Kalkbrener, each polynomial is equal to f modulo the saturated ideal of , for all , and each polynomial is either zero or invertible modulo the saturated ideal of , for all .
The above specification is similar to that of the command Regularize. However the algorithm of the command RegularizeDim0 makes use of modular techniques and asymptotically fast polynomial arithmetic. Consequently, when both commands apply, the latter one often outperforms the former.
The function call RegularizeDim0(p, rc, R) makes two other assumptions. First rc must be a zero-dimensional regular chain. See the RegularChains package and its subpackage ChainTools for these notions.
Secondly, R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this computation. The higher the degrees of f and rc are, the larger must be, such that divides . If the degree of f or rc is too large, then an error is raised.
If isSquareFree is true then assume that rc is a squarefree regular chain, that is, its saturated ideal is radical.
Examples
p is a large prime number
Define a random dense regular chain and a polynomial
We can see that Regularize is slower than RegularizeDim0.
These additional calculations show that the two returned regular chains are equivalent (i.e. they have the same saturated ideals).
See Also
ChainTools, Inverse, IsRegular, RegularChains, Regularize
Download Help Document