Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[FastArithmeticTools][RegularGcdBySpecializationCube] - regular GCD of two polynomials modulo a regular chain
Calling Sequence
RegularGcdBySpecializationCube(f1, f2, rc, SCube, R)
Parameters
R
-
polynomial ring
f1
polynomial of R
f2
rc
regular chain
SCube
subresultant chain specialization cube
Description
The command RegularGcdBySpecializationCube returns a list of pairs where is a polynomial and is a regular chain such that the regular chains all together form a triangular decomposition of rc in the sense of Lazard, and each polynomial is a GCD of f1 and f2 modulo rc_i, for all . See the command RegularGcd for details on this notion of polynomial GCD modulo the saturated ideal of a regular chain.
f1 and f2 must have the same main variable v, with and , both regular w.r.t the saturated ideal of rc.
The resultant of f1 and f2 w.r.t. v must be null modulo the saturated ideal of rc.
R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f1 and f2 are, the larger must be such that divides . If the degree of f1 or f2 is too large, then an error is raised.
The algorithm implemented by the command RegularGcd is more general and does not require the latter two assumptions. However, when both commands can be used the command RegularGcdBySpecializationCube is very likely to outperform RegularGcd, since it relies on modular techniques and asymptotically fast polynomial arithmetic.
Examples
Define a ring of polynomials.
Define two polynomials of R.
Compute images of the subresultant chain of sufficiently many points in order to interpolate. Multi-dimensional TFT (Truncated Fourier Transform) is used to evaluate and interpolate since 1 is passed as fifth argument
Interpolate the resultant from the SCube
Define a regular chain with r2. Note that r2 is not required to be squarefree.
Compute a regular GCD of f1 and f2 modulo rc
See Also
RegularChains, RegularGcd, ResultantBySpecializationCube, SubresultantChainSpecializationCube
Download Help Document