Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[FastArithmeticTools][IteratedResultantDim1] - iterated resultant of a polynomial w.r.t a one-dim regular chain
Calling Sequence
IteratedResultantDim1(f, rc, R, v)
IteratedResultantDim1(f, rc, R, v, bound)
Parameters
R
-
a polynomial ring
rc
a regular chain
f
a polynomial
v
variable of R
bound
an upper bound of the degree of the iterated resultant to be computed (optional)
Description
The function call IteratedResultantDim1(f, rc, R) returns the numerator of the iterated resultant of f w.r.t. rc, computed over the field of univariate rational functions in v and with coefficients in R. See the command IteratedResultant for a definition of the notion of an iterated resultant.
rc is assumed to be a one-dimensional normalized regular chain with v as free variable and f has positive degree w.r.t. v.
Moreover R must have a prime characteristic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f and rc are, the larger must be such that divides . If the degree of f or rc is too large, then an error is raised.
The default value of bound is the product of the total degrees of the polynomials in rc and f.
The iterated resultant computed by the command IteratedResultant produces the same answer provided that all initials in the regular chain rc are equal to .
The interest of the function call IteratedResultantDim1(f, rc, R) resides in the fact that, if the polynomial f is regular modulo the saturated ideal of the regular chain rc, then the roots of the returned polynomial form the projection on the v-axis of the intersection of the hypersurface defined by f and the quasi-component defined by rc.
Examples
Define a ring of polynomials.
Define random dense polynomial and regular chain of R.
Compute the (numerator) of the iterated resultant
Compare with the generic algorithm (non-fast and non-modular algorithm) of the command IteratedResultant.
Check that the two results are equal, since here all initials are equal to 1.
See Also
IteratedResultant, IteratedResultantDim0 , RandomRegularChainDim1, RegularChains, ResultantBySpecializationCube, SubresultantChainSpecializationCube
Download Help Document