Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ConstructibleSetTools][RegularSystem] - construct a regular system from a regular chain and a list of inequations
Calling Sequence
RegularSystem(rc, H, R)
RegularSystem(rc, R)
RegularSystem(H, R)
RegularSystem(R)
Parameters
rc
-
regular chain
H
list of polynomials of R
R
polynomial ring
Description
The command RegularSystem(rc, H, R) constructs a regular system from a regular chain and a list of inequations. Denote by the quasi-component of rc. Then the constructed regular system encodes those points in that do not cancel any polynomial in H.
Each polynomial in H must be regular with respect to the regular chain rc; otherwise an error is reported.
If rc is not specified, then rc is set to the empty regular chain.
If H is not specified, then H is set to .
The command RegularSystem(R) constructs the regular system corresponding to the whole space.
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form RegularSystem(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][RegularSystem](..).
See ConstructibleSetTools and RegularChains for the related mathematical concepts, in particular for the ideas of a constructible set, a regular system, and a regular chain.
Examples
Define a polynomial ring.
Define a set of polynomials of R.
There are two groups of solutions, each of which is given by a regular chain. To view the equations, use the Equations command.
Let rc1 be the first regular chain, and rc2 be the second one.
Consider two polynomials h1 and h2; regard them as inequations.
To obtain regular systems, first check if is regular with respect to , and is regular with respect to .
Both of them are regular, thus you can build the following regular systems.
You can simply call RegularSystem(R) to build the regular system which encodes all points.
The complement of must be empty.
See Also
ConstructibleSet, ConstructibleSetTools, QuasiComponent, RegularChains, RegularSystemDifference, RepresentingChain, RepresentingInequations, RepresentingRegularSystems
Download Help Document