Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ConstructibleSetTools][Intersection] - compute the intersection of two constructible sets
RegularChains[SemiAlgebraicSetTools][Intersection] - compute the intersection of two semi-algebraic sets
Calling Sequence
Intersection(cs1, cs2, R)
Intersection(lrsas1, lrsas2, R)
Parameters
cs1, cs2
-
constructible sets
lrsas1, lrsas2
lists of regular semi-algebraic systems
R
polynomial ring
Description
This command computes the set-theoretic intersection of two constructible sets, or two semi-algebraic set, depending on the input type of its arguments.
A constructible set must be encoded as an constructible_set object, see the type definition in ConstructibleSetTools.
A semi-algebraic set must be encoded by a list of regular_semi_algebraic_system, see the type definition in RealTriangularize.
The command Intersection(cs1, cs2, R) returns the intersection of two constructible sets. The polynomial ring may have characteristic zero or a prime characteristic.
The command Intersection(lrsas1, lrsas2, R) returns the intersection of two semi-algebraic sets, encoded by list of regular_semi_algebraic_system. The polynomial ring must have characteristic zero.
This command is available once RegularChains[ConstructibleSetTools] submodule or RegularChains[SemiAlgebraicSetTools] submodule have been loaded. It can always be accessed through one of the following long forms: RegularChains:-ConstructibleSetTools:-Intersection or RegularChains:-SemiAlgebraicSetTools:-Intersection.
Compatibility
The RegularChains[SemiAlgebraicSetTools][Intersection] command was introduced in Maple 16.
The lrsas1 parameter was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
First, define the polynomial ring and two polynomials of .
Using the GeneralConstruct command and adding one inequality, you can build a constructible set. Using the polynomials and for defining inequations, the two constructible sets cs1 and cs2 are different.
The intersection of cs1 and cs2 is a new constructible set cs.
Check the result in another way.
The results are as desired.
Consider now the semi-algebraic case:
Verify the results
See Also
Complement, ConstructibleSet, ConstructibleSetTools, Difference, GeneralConstruct, RealTriangularize, RegularChains, RegularChains, SemiAlgebraicSetTools
References
Chen, C.; Golubitsky, O.; Lemaire, F.; Moreno Maza, M.; and Pan, W. "Comprehensive Triangular Decomposition". Proc. CASC 2007, LNCS, Vol. 4770: 73-101. Springer, 2007.
Chen, C.; Davenport, J.-D.; Moreno Maza, M.; Xia, B.; and Xiao, R. "Computing with semi-algebraic sets represented by triangular decomposition". Proceedings of 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, pp. 75--82, 2011.
Download Help Document