Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ConstructibleSetTools][Complement] - compute the complement of a constructible set
RegularChains[SemiAlgebraicSetTools][Complement] - compute the complement of a semi-algebraic set
Calling Sequence
Complement(cs, R)
Complement(lrsas, R)
Parameters
cs
-
constructible set
lrsas
list of regular semi-algebraic systems
R
polynomial ring
Description
The command Complement(cs, R) returns the complement of the constructible set cs in the affine space associated with R. If K is the algebraic closure of the coefficient field of R and n is the number of variables in R, then this affine space is . The polynomial ring may have characteristic zero or a prime characteristic.
The command Complement(lrsas, R) returns the complement of the semi-algebraic set represented by lrsas (see RealTriangularize for this representation). The polynomial ring must have characteristic zero. The empty semi-algebraic set is encoded by the empty list.
The empty constructible set represents the empty set of .
This command is available once RegularChains[ConstructibleSetTools] submodule or RegularChains[SemiAlgebraicSetTools] submodule have been loaded. It can always be accessed through one of the following long forms: RegularChains[ConstructibleSetTools][Complement] or RegularChains[SemiAlgebraicSetTools][Complement].
Compatibility
The RegularChains[SemiAlgebraicSetTools][Complement] command was introduced in Maple 16.
The lrsas parameter was introduced in Maple 16.
For more information on Maple 16 changes, see Updates in Maple 16.
Examples
First define the polynomial ring and two polynomials of .
The goal is to determine for which parameter values of , , and the generic linear equations and have solutions. Project the variety defined by and onto the parameter space.
Therefore, four regular systems encode this projection in the parameter space. The complement of cs should be those points that make the linear equations have no common solutions.
If you call Complement twice, you should retrieve the constructible set cs.
Semi-algebraic case
Verify compl = expected as set of points by Difference.
See Also
ConstructibleSet, ConstructibleSetTools, Difference, Intersection, Projection, RealTriangularize, RegularChains, SemiAlgebraicSetTools, Union
References
Chen, C.; Golubitsky, O.; Lemaire, F.; Moreno Maza, M.; and Pan, W. "Comprehensive Triangular Decomposition". Proc. CASC 2007, LNCS, Vol. 4770: 73-101. Springer, 2007.
Chen, C.; Davenport, J.-D.; Moreno Maza, M.; Xia, B.; and Xiao, R. "Computing with semi-algebraic sets represented by triangular decomposition". Proceedings of 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, pp. 75--82, 2011.
Download Help Document