Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Ore_algebra[shift_algebra] - create an algebra of linear difference operators
Ore_algebra[qshift_algebra] - create an algebra of linear q-difference operators
Calling Sequence
shift_algebra(l_1, ..., l_n)
qshift_algebra(lq_1, ..., lq_n)
Parameters
l_i
-
list or list
lq_i
S_i
indeterminates (shift and q-shift operator names)
n_i
indeterminates (variable names)
a_i
indeterminates (parameter names)
Description
The shift_algebra(l_1, ..., l_n) and qshift_algebra(lq_1, ..., lq_n) functions each declare an Ore algebra and return a table that is used by other functions of the Ore_algebra package.
A difference algebra is an algebra of noncommutative polynomials in the indeterminates ruled by the following commutation relations:
for . Any other pair of indeterminates commute.
A q-difference algebra is an algebra of noncommutative polynomials in the indeterminates ruled by the following commutation relations:
for . q is a constant and any other pair of indeterminates commute.
Note: Difference and q-difference algebras are special cases of Ore algebras. For more information, see Ore_algebra.
The name n_i can be unassigned.
The name S_i can be unassigned. It is used to denote the difference or q-difference indeterminate S_i associated to the base indeterminate n_i, that is, the operator of shift or q-shift with respect to n_i.
When the list l_i is of the form (difference case) or (q-difference case), the names n_i and S_i can be unassigned. Both indeterminates commute with any other indeterminate of the algebra.
When the list l_i is of the form , the name a_i can be unassigned. It denotes a parameter that commutes with any other indeterminate of the algebra.
Though difference and q-difference algebras are noncommutative algebras, their elements are represented with the standard commutative Maple product. Every Ore_algebra function dealing with elements of a difference of q-difference algebra uses its normal form where all S_i appear on the right of the corresponding n_i. A monomial can therefore be printed either or .
The sum in difference or q-difference algebras is performed by simply using the Maple `+`, while the product is performed by the Ore_algebra function skew_product (see examples below).
It is also possible to declare a difference or a q-difference algebra by using Ore_algebra[skew_algebra]. Moreover, the algebras declared by Ore_algebra[shift_algebra] and Ore_algebra[qshift_algebra] are difference and q-difference algebras based on shift and q-shift operators S_i, but it is also possible to declare algebras based on finite difference and q-difference operators (see Ore_algebra[skew_algebra], predefined types delta and qdelta).
Options are available to control the ground ring of the algebra and the action of the operators on Maple objects. See Ore_algebra[declaration_options].
These function are part of the Ore_algebra package, and so can be used in the form shift_algebra(..) and qshift_algebra(..) only after performing the command with(Ore_algebra) or with(Ore_algebra,<function>). The functions can always be accessed in the long form Ore_algebra[shift_algebra](..) and Ore_algebra[qshift_algebra](..).
Examples
Difference algebras:
Both following calls are equivalent. The first syntax is more convenient to input numerous commutative parameters.
Both following algebras are different points of view for the same algebra of operators
(or equivalently skew_algebra(shift=[Sn, n]);).
q-difference algebras:
There can also be distinct qs.
See Also
Ore_algebra, Ore_algebra/skew_product
Download Help Document