Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearFunctionalSystems[LogarithmicSolution] - return the logarithmic solution of a linear system of differential equations
Calling Sequence
LogarithmicSolution(sys, vars, opts)
LogarithmicSolution(A, x, case, opts)
Parameters
sys
-
list of equations; linear differential system
vars
list of function variables such as [y1(x), y2(x), ...]; variables to solve for
A
Matrix with rational elements
x
independent variable
case
'differential'; indicates the case of the system
opts
(optional) expression of the form hybrid=b where b is 'true' (default) if LinearFunctionalSystems[UniversalDenominator] (see below) should use hybrid method, false otherwise
Description
The LogarithmicSolution function returns the logarithmic solutions (that is, the solutions in Q(x)[log(x)]) of the specified linear differential system of equations with polynomial coefficients). If such a solution does not exist, then NULL is returned. If the denominator of the solutions cannot be bound then FAIL is returned.
The system parameter is entered either in list form (a list of equations sys and a list of function variables vars to solve for), or in matrix form (matrix A and the independent variable x).
The matrix form specifies the system , where L is the differential operator, is the vector of the functions to solve for, and A is a rational matrix.
For the matrix form of the calling sequence, the case of the system must be specified as 'differential'.
Logarithmic solution is a global problem which is an analog of the local one of finding regular solutions (see LinearFunctionalSystems[RegularSolution]). The logarithmic solutions are of the form where the are rational functions.
The solution involves arbitrary constants of the form _c1, _c2, etc.
The function first computes a universal denominator of the solution using LinearFunctionalSystems[UniversalDenominator]. Then the found denominator is substituted into the system and the resulted system is solved for the solution in Q[x][log(x)], which is performed by an algorithm analogous to one used in LinearFunctionalSystems[RegularSolution].
The error conditions associated with LogarithmicSolution include all those generated by LinearFunctionalSystems[Properties] as well as the following:
The system must be homogeneous.
The case must be differential.
This function is part of the LinearFunctionalSystems package, and so it can be used in the form LogarithmicSolution(..) only after executing the command with(LinearFunctionalSystems). However, it can always be accessed through the long form of the command by using the form LinearFunctionalSystems[LogarithmicSolution](..).
Examples
See Also
LinearFunctionalSystems[MatrixTriangularization], LinearFunctionalSystems[Properties], LinearFunctionalSystems[RationalSolution], LinearFunctionalSystems[RegularSolution], LinearFunctionalSystems[UniversalDenominator]
Download Help Document