Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LREtools[HypergeometricTerm][RationalSolution] - return the rational solution of linear difference equation depending on a hypergeometric term
Calling Sequence
RationalSolution(eq, var, term)
Parameters
eq
-
linear difference equation depending on a hypergeometric term
var
function variable for which to solve, for example, z(n)
term
hypergeometric term
Description
The RationalSolution(eq, var, term) command returns the rational solution of the linear difference equation eq. If such a solution does not exist, the function returns NULL.
The hypergeometric term in the linear difference equation is specified by a name, for example, t. The meaning of the term is defined by the parameter term. It can be specified directly in the form of an equation, for example, , or specified as a list consisting of the name of term variable and the consecutive term ratio, for example, .
If the third parameter is omitted, then the input equation can contain a hypergeometric term directly (not a name). In this case, the procedure extracts the term from the equation, transforms the equation to the form with a name representing a hypergeometric term, and then solves the transformed equation.
The term "rational solution" means a solution in . (See PolynomialSolution for the meaning of "polynomial solution".) Here we use the term "denominator" which is q in to mean that is in .
The search for a rational solution is based on finding a universal denominator which is u in such that is in for any rational solution y. By replacing y with in the given equation, we reduce the problem to searching for a polynomial solution.
The solution is the function, corresponding to var. The solution involves arbitrary constants of the form, for example, _c1 and _c2.
Examples
See Also
LREtools[HypergeometricTerm], LREtools[HypergeometricTerm][HGDispersion], LREtools[HypergeometricTerm][PolynomialSolution], LREtools[HypergeometricTerm][RationalSolution], LREtools[HypergeometricTerm][SubstituteTerm], LREtools[HypergeometricTerm][UniversalDenominator]
References
Abramov, S.A., and Bronstein, M. "Hypergeometric dispersion and the orbit problem." Proc. ISSAC 2000.
Bronstein, M. "On solutions of Linear Ordinary Difference Equations in their Coefficients Field." INRIA Research Report. No. 3797. November 1999.
Download Help Document