Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LREtools[HypergeometricTerm][OrbitProblemSolution] - solve the sigma-orbit problem
Calling Sequence
OrbitProblemSolution(, , x, r)
Parameters
-
first polynomial or an algebraic number
second polynomial or an algebraic number
x
independent variable, for example, x
r
list of equations which gives the tower of hypergeometric extensions
Description
The OrbitProblemSolution(, , x, r) command returns the solution of a -orbit problem, that is, a positive integer n such that . and can be algebraic numbers or polynomials in K(r), where K is the ground field and r is the tower of hypergeometric extensions. Each is specified by a hypergeometric term, that is, is a rational function over K. E is the shift operator.
If and are algebraic numbers then the procedure solves the classic orbit problem (). Otherwise, it solves the -orbit problem for polynomials in the tower of hypergeometric extensions. This means that the polynomials can contain hypergeometric terms in their coefficients. These terms are defined in the parameter r. Each hypergeometric term in the list is specified by a name, for example, t. It can be specified directly in the form of an equation, for example, , or specified as a list consisting of the name of the term variable and the consecutive term ratio, for example, . The OrbitProblemSolution function returns if there is no solution.
If the arguments of the -orbit problem are algebraic numbers, then the routine directly computes the solution. Otherwise, a hypergeometric dispersion is calculated. For an empty tower of hypergeometric extensions, a simple dispersion is calculated.
Examples
See Also
LREtools[HypergeometricTerm], LREtools[HypergeometricTerm][HGDispersion]
References
Abramov, S.A., and Bronstein, M. "Hypergeometric dispersion and the orbit problem." Proc. ISSAC 2000.
Download Help Document