Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LREtools[AnalyticityConditions] - analyticity conditions for the solution of linear difference equation.
Calling Sequence
AnalyticityConditions(L, E, fun, HalfInt_opt, Direction_opt)
Parameters
L
-
linear difference operator in E with coefficients which are polynomials in x
E
name of the shift operator acting on x
fun
function f(x) that is a solution of
HalfInt_opt
(optional) 'HalfInterval'= A, A is a rational number, 0 by default
Direction_opt
(optional) 'direction'='left' -- the procedure returns the conditions for analyticity of f(x) on or 'direction'='right', the conditions on .
Description
The AnalyticityConditions command returns the set of conditions for the analyticity of f(x).
The input includes a difference operator
L := sum(a[i](x)* E^i,i=1..d);
and a point A. The solution f(x) is analytic on some open set which contains a set . The procedure returns the set of conditions for the analyticity of f(x) on or if the option Direction_Opt is given or on the whole C otherwise. The conditions are linear relations of f(x) and, perhaps, several derivatives of f(x) at the points into .
Examples
solution f(x) = x is analytic everywhere on C:
solution f(x) = x->1/x^2 is not analytic anywhere on C:
See Also
LREtools, LREtools[IsDesingularizable], LREtools[ValuesAtPoint]
References
Abramov, S.A., and van Hoeij, M. "Set of Poles of Solutions of Linear Difference Equations with Polynomial Coefficients." Computation Mathematics and Mathematical Physics. Vol. 43 No. 1. (2003): 57-62.
Download Help Document