Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GraphTheory[IsStronglyConnected]
GraphTheory[StronglyConnectedComponents]
Calling Sequence
IsStronglyConnected(G)
StronglyConnectedComponents(G, sortoption)
Parameters
G
-
graph
sortoption
equation of the form sorted=true or false (optional)
Description
A graph G is strongly connected if for each vertex u in G there is a path to every other vertex in G. Note: a graph with one vertex is strongly connected. If G is an undirected graph, then being strongly connected is equivalent to being connected. An example of a strongly connected graph is the directed cycle graph.
The IsStronglyConnected('G') function returns true if the input graph is a strongly connected graph. It returns false otherwise.
The StronglyConnectedComponents command computes the maximal subgraphs of G which are strongly connected. It returns them as a list of lists of vertices where the number of lists indicates the number of strongly connected components.
By default the result is sorted by size of the subgraph. The optional parameter sorted=false can be used to preserve the order as computed by the algorithm.
Examples
The graph below is connected but not strongly connected since vertex 1 is not reachable from vertices 2 or 3.
See Also
ConnectedComponents, Digraph, IsConnected, Trail
Download Help Document