Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GraphTheory[IsIsomorphic] - determine if two graphs are isomorphic
Calling Sequence
IsIsomorphic(G1,G2)
IsIsomorphic(G1,G2,phi)
Parameters
G1
-
unweighted undirected graph 1
G2
unweighted undirected graph 2
phi
(optional) name to assign mapping of graph 1 to graph 2
Description
The IsIsomorphic command accepts two unweighted undirected graphs as input, and returns true if the graphs are isomorphic to each other, and false otherwise.
If a third argument phi is provided, it is assigned to a list of equations of the form v1=v2, where the v1 and v2 correspond to the vertices of graph 1 and graph 2 respectively, that provide a mapping of vertices that shows the graphs are isomorphic.
The method used is a backtracking algorithm that provides reasonable efficiency even for large graphs. (In general the the graph isomorphism problem is exponential in the number of vertices.)
Examples
Create isomorphic permutation of Petersen graph, and check
Apply permutation to permuted graph to obtain original Petersen graph and compare adjacency matrices
See Also
AdjacencyMatrix, IsomorphicCopy
Download Help Document