Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
GraphTheory[GraphUnion]
Calling Sequence
GraphUnion(G1,...,Gs)
Parameters
G1,...,Gs
-
graphs
Description
The GraphUnion(G1,G2) function returns a graph G with Vertices(G) = Vertices(G1) union Vertices(G2) and Edges(G) = Edges(G1) union Edges(G2). Moreover, if G1 and G2 are both weighted graphs, the resulting graph is a weighted graph where the weight of any common edge is the sum of the weights of that edge in G1 and G2.
Note that G1 and G2 must both be directed, or both be undirected, and then the resulting graph is directed or undirected, respectively. Likewise, G1 and G2 must both be weighted, or both unweighted, and the resulting graph is then weighted or unweighted, respectively.
Examples
In this example, note that the vertices of G1 and G2 are permuted differently.
In this example, note that there is one common vertex between the two graphs
See Also
CartesianProduct, DisjointUnion, GraphJoin
Download Help Document