Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[blackscholes] - present value of a call option
Calling Sequence
blackscholes(amount, exercise, rate, nperiods, sdev, hedge)
Parameters
amount
-
current stock price
exercise
exercise price of the call option
rate
risk-free interest rate per period, (continuously compounded)
nperiods
number of periods
sdev
standard deviation per period of the continuous return on the stock
hedge
(optional name) hedge ratio
Description
The function blackscholes computes the present value of a call option under the hypotheses of the model of Black and Scholes.
The function requires the value of the standard deviation. It can be calculated from the variance by taking the square root.
The hedge ratio give ratio of the expected stock price at expiration to the current stock price.
There are strong assumptions on the Black-Scholes model. Use at your own risk. Refer to appropriate finance books for the list of assumptions.
The command with(Finance,blackscholes) allows the use of the abbreviated form of this command.
Since blackscholes used to be part of the (now deprecated) finance package, for compatibility with older worksheets, this command can also be called using finance[blackscholes]. However, it is recommended that you use the superseding package name, Finance, instead: Finance[blackscholes].
Compatibility
The Finance[blackscholes] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
There is a 49 U call option with 199 days to maturity on a stock that is selling at present at 50 U. The annualized continuously compounding risk-free interest rate is 7%. The variance of the stock is estimated at 0.09 per year. Using the Black-Scholes model, the value of the option would be
which is about 5.85 U.
Let us examine how this result changes by changing the parameters. Increasing the stock price
the option value increases.
Increasing exercise price
the option value decreases.
Increasing the risk-free interest rate
Increasing the time to expiration
Increasing the stock volatility
the option value increases. Plot the value of the call with respect to the share price.
The upper bound: option is never worth more than the share. The lower bound: option is never worth less than what one would get for immediate exercise of the call.
See Also
Finance[BlackScholesBinomialTree], Finance[LatticeMethods]
Download Help Document