Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[HestonProcess] - create new Heston process
Calling Sequence
HestonProcess(, , mu, theta, kappa, sigma, rho)
Parameters
-
algebraic expression; initial value of the state variable
algebraic expression; initial value of the variance
mu
algebraic expression; risk-neutral drift
theta
algebraic expression; long-run mean of the variance process
kappa
algebraic expression; speed of mean reversion of the variance process
sigma
algebraic expression; volatility of the variance process
rho
algebraic expression; instantaneous correlation between the return process and the volatility process
Description
The HestonProcess command creates a new stochastic process governed by the following stochastic differential equation (SDE)
where
is the drift parameter
is the long-run mean
is the speed of mean reversion
is the volatility of the variance process
and
is the two-dimensional Wiener process with instantaneous correlation .
This is a stochastic volatility process that was introduced by Heston in A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.
The parameter defines the initial value of the underlying stochastic process.
The parameter mu is the drift parameter of state process.
The volatility of this process evolves as a SquareRootDiffusion.
The parameter kappa is the speed of mean-reversion of the variance process. The parameter theta is the long-term running mean of the variance process. The parameter sigma is the volatility of the variance process. In general, kappa, theta, and sigma can be any algebraic expressions. However, if the process is to be simulated, these parameters must be assigned numeric values.
The parameter rho is the instantaneous correlation between the state process and the volatility process.
Compatibility
The Finance[HestonProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
You can now simulate the Heston process.
These are sample paths for the state variables.
And these are the corresponding sample paths for the volatility.
See Also
Finance[BlackScholesProcess], Finance[BrownianMotion], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[GeometricBrownianMotion], Finance[ItoProcess], Finance[SamplePath], Finance[SampleValues], Finance[SquareRootDiffusion], Finance[StochasticProcesses], Finance[WienerProcess]
References
Brigo, D., Mercurio, F., Interest Rate Models: Theory and Practice. New York: Springer-Verlag, 2001.
Gatheral, J., The Volatility Surface: A Practioner's Guide, (with foreword by Nassim Taleb), Wiley, 2006.
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Heston, Steven L., A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, The review of Financial Studies, Volume 6, Issue 2, 327-343, 1993.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document