Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[Drift] - compute the drift component of an Ito process
Calling Sequence
Drift(X)
Drift(f, mu, sigma, X, t)
Parameters
X
-
stochastic process, expression involving stochastic variables
f
algebraic expression involving stochastic variables
mu
algebraic expression, drift term of the original process
sigma
algebraic expression, diffusion term of the original process
name, stochastic variable
t
name, time variable
Description
The Drift(X) calling sequence computes the drift term of an Ito process X. That is, given a process governed by the stochastic differential equation (SDE)
the Drift command will return .
The parameter X can be either a stochastic process or an expression involving stochastic variables. In the first case a Maple procedure is applied for computing the drift term. This procedure will accept two parameters: the value of the state variable and the time, and return the corresponding value of the drift. In the second case, Ito's lemma will be applied to calculate the drift term of X. Note that the Drift command will perform formal computations; the validity of these computations for a given function f will not be verified.
Compatibility
The Finance[Drift] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
The Drift command knows how to compute the drift for all supported Ito-type processes.
You can also use expressions involving stochastic variables.
The following example deals with two correlated one-dimensional Wiener processes.
See Also
Finance[BrownianMotion], Finance[CEVProcess], Finance[DeterministicProcess], Finance[Diffusion], Finance[GaussianShortRateProcess], Finance[GeometricBrownianMotion], Finance[HestonProcess], Finance[OrnsteinUhlenbeckProcess], Finance[SquareRootDiffusion], Finance[StochasticProcesses], Finance[WienerProcess]
References
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Kloeden, P., and Platen, E., Numerical Solution of Stochastic Differential Equations, New York: Springer-Verlag, 1999.
Download Help Document