Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[CEVProcess] - create new constant elasticity of variance (CEV) process
Calling Sequence
CEVProcess(, mu, sigma, beta, opts)
Parameters
-
algebraic expression; initial value
mu
algebraic expression; drift parameter
sigma
algebraic expression; volatility parameter
beta
algebraic expression; elasticity parameter
opts
(optional) equation(s) of the form option = value where option is scheme; specify options for the CEVProcess command
Description
The CEVProcess command creates new constant elasticity of variance (CEV) process , which is governed by the stochastic differential equation (SDE)
where
is the drift
is the volatility
is the elasticity
and
is the standard Wiener process.
The parameter is the initial value of the process.
The parameters mu, sigma and beta can be any algebraic expressions but must be constant if the process is to be simulated.
The constant elasticity of variance (CEV) process provides an alternative to the lognormal model for equity prices. This model includes the geometric Brownian motion as a special case . The main advantage of such a model is that the volatility of the stock price is no more constant but it is a function of the underlying asset price. In particular, in the CEV model the variations in the underlying asset price are negative correlated with the variations in the volatility level which helps to reduce the well-known volatility smile effect of the lognormal model.
Options
scheme = unbiased or Euler -- This option specifies which discretization scheme should be used for simulating this process.
Compatibility
The Finance[CEVProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
The following set of examples estimates the distribution of for different values of the elasticity parameter .
See Also
Finance[BlackScholesProcess], Finance[BrownianMotion], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[GeometricBrownianMotion], Finance[ItoProcess], Finance[SamplePath], Finance[SampleValues], Finance[StochasticProcesses], Finance[WienerProcess]
References
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document