Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[BlackScholesTrinomialTree] - create a recombining trinomial tree approximating a Black-Scholes process
Calling Sequence
BlackScholesTrinomialTree(, r, d, v, T, N)
BlackScholesTrinomialTree(, r, d, v, G)
Parameters
-
positive constant; the inital value of the underlying asset
r
non-negative constant or yield term structure; annual risk-free rate function for the underlying asset
d
non-negative constant or yield term structure; annual dividend rate function for the underlying asset
v
non-negative constant or a volatility term structure; local volatility
T
positive constant; time to maturity date (in years)
N
positive integer; number of steps
G
the number of steps used in the trinomial tree
Description
The BlackScholesTrinomialTree(, r, d, v, G) command returns a trinomial tree approximating a Black-Scholes process with the specified parameters. Each step of this tree is obtained by combining two steps of the corresponding binomial tree (see Finance[BlackScholesBinomialTree] for more details).
The BlackScholesTrinomialTree(, r, d, v, T, N) command is similar except that in this case a uniform time grid with step size is used instead of G.
Compatibility
The Finance[BlackScholesTrinomialTree] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First you construct a trinomial tree for a Black-Scholes process with constant drift and volatility.
Here are two different views of the same tree; the first one uses the standard scale, the second one uses the logarithmic scale.
Inspect the tree.
Here is an example of a Black-Scholes process with time-dependent drift and volatility.
Again, you have two different views of the same tree. The first one uses the standard scale, the second one uses the logarithmic scale.
Inspect the second tree.
Compare the two trees.
See Also
Finance[BinomialTree], Finance[BlackScholesBinomialTree], Finance[GetDescendants], Finance[GetProbabilities], Finance[GetUnderlying], Finance[ImpliedBinomialTree], Finance[ImpliedTrinomialTree], Finance[LatticeMethods], Finance[MultinomialTree], Finance[SetDescendants], Finance[SetProbabilities], Finance[SetUnderlying], Finance[StochasticProcesses], Finance[TreePlot], Finance[TrinomialTree]
References
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document