Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[BlackScholesRho] - compute the Rho of a European-style option with given payoff
Calling Sequence
BlackScholesRho(, K, T, sigma, r, d, optiontype)
BlackScholesRho(, P, T, sigma, r, d)
Parameters
-
algebraic expression; initial (current) value of the underlying asset
K
algebraic expression; strike price
T
algebraic expression; time to maturity
sigma
algebraic expression; volatility
r
algebraic expression; continuously compounded risk-free rate
d
algebraic expression; continuously compounded dividend yield
P
operator or procedure; payoff function
optiontype
call or put; option type
Description
The Rho of an option or a portfolio of options is the sensitivity of the option or portfolio to changes in the risk-free rate
The BlackScholesRho command computes the Rho of a European-style option with the specified payoff function.
The parameter is the initial (current) value of the underlying asset. The parameter T is the time to maturity in years.
The parameter K specifies the strike price if this is a vanilla put or call option. Any payoff function can be specified using the second calling sequence. In this case the parameter P must be given in the form of an operator, which accepts one parameter (spot price at maturity) and returns the corresponding payoff.
The sigma, r, and d parameters are the volatility, the risk-free rate, and the dividend yield of the underlying asset. These parameters can be given in either the algebraic form or the operator form. The parameter d is optional. By default, the dividend yield is taken to be 0.
Compatibility
The Finance[BlackScholesRho] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First you compute the Rho of a European call option with strike price 100, which matures in 1 year. This will define the Rho as a function of the risk-free rate, the dividend yield, and the volatility.
In this example you will use numeric values for the risk-free rate, the dividend yield, and the volatility.
We can also use the generic method in which the option is defined through its payoff function.
Here are similar examples for the European put option.
In this example, you will compute the Rho of a strangle.
Check:
See Also
Finance[AmericanOption], Finance[BermudanOption], Finance[BlackScholesDelta], Finance[BlackScholesGamma], Finance[BlackScholesPrice], Finance[BlackScholesTheta], Finance[BlackScholesVega], Finance[EuropeanOption], Finance[ImpliedVolatility], Finance[LatticePrice]
References
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document