Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[BlackScholesProcess] - create new Black-Scholes process
Calling Sequence
BlackScholesProcess(, sigma, r, d)
BlackScholesProcess(, sigma, r, d, t, S)
Parameters
-
non-negative constant; initial value
r
non-negative constant, procedure or yield term structure; risk-free rate
sigma
non-negative constant, procedure or a local volatility structure; volatility
d
non-negative constant, procedure or yield term structure; dividend yield
t
name; time variable
S
name; state variable
Description
The BlackScholesProcess command creates a new Black-Scholes process. This is a process governed by the stochastic differential equation (SDE)
where
is the risk-free rate,
is the local volatility,
is the dividend yield,
and
is the standard Wiener process.
The parameter defines the initial value of the underlying stochastic process. It must be a real constant.
The parameter r is the risk-free rate. The parameter d is the continuous dividend yield. Time-dependent risk-free rate and dividend yield can be given either as an algebraic expression, a Maple procedure, or a yield term structure. If r or d is given as an algebraic expression, then the fifth parameter t must be passed to specify which variable in r should be used as the time variable. Maple procedure defining a time-dependent drift must accept one parameter (the time) and return the corresponding value for the drift.
The sigma parameter is the local volatility. It can be constant or it can be given as a function of time and the value of the state variable. In the second case it can be specified as an algebraic expression, a Maple procedure or a local volatility term structure. If sigma is specified in the algebraic form, the parameters t and S must be given to specify which variable in sigma represents the time variable and which variable represents the value of the underlying.
Compatibility
The Finance[BlackScholesProcess] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First define a Black-Scholes process with constant parameters.
You can compute the expected payoff of a European call option with strike 100 maturing in 1 year.
You can then compare the result to the theoretical price.
This is incorporating local volatility term structure.
Again, you can compute the expected payoff of a European call option with strike 100 maturing in 1 year.
Then you can compute the implied volatility.
In this example we implied volatility surface obtained using a piecewise interpolation of known prices.
See Also
Finance[BlackScholesPrice], Finance[BrownianMotion], Finance[Diffusion], Finance[Drift], Finance[ExpectedValue], Finance[ForwardCurve], Finance[GeometricBrownianMotion], Finance[ImpliedVolatility], Finance[ItoProcess], Finance[LocalVolatility], Finance[LocalVolatilitySurface], Finance[MertonJumpDiffusion], Finance[PathPlot], Finance[SamplePath], Finance[SampleValues], Finance[StochasticProcesses]
References
Glasserman, P., Monte Carlo Methods in Financial Engineering. New York: Springer-Verlag, 2004.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document