Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Factors - inert factors function
Calling Sequence
Factors(a, K)
Parameters
a
-
multivariate polynomial
K
optional specification for an algebraic extension
Description
The Factors function is a placeholder for representing the factorization of the multivariate polynomial a over U, a unique factorization domain. The construct Factors(a) produces a data structure of the form such that , where each f[i] is a primitive irreducible polynomial.
The difference between the Factors function and the Factor function is only the form of the result. The Factor function, if defined, returns a Maple sum of products more suitable for interactive display and manipulation.
The call Factors(a) mod p computes the factorization of a over the integers modulo p, a prime integer. The polynomial a must have rational coefficients or coefficients over a finite field specified by RootOfs.
The call Factors(a, K) mod p computes the factorization over the finite field defined by K, an algebraic extension of the integers mod p where K is a RootOf.
The call modp1(Factors(a),p) computes the factorization of the polynomial a in the representation modulo p a prime integer.
The call evala(Factors(a, K)) computes the factorization of the polynomial a over an algebraic number (or function) field defined by the extension K, which is specified as a RootOf or a set of RootOfs. The polynomial a must have algebraic number (or function) coefficients. The factors are monic for the ordering of the variables chosen by Maple.
Examples
See Also
AFactor, AFactors, Expand, Factor, factors, ifactors, Irreduc, mod, modp1, Sqrfree
Download Help Document