Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Eigenvals - eigenvalues/vectors of a numeric matrix
Calling Sequence
Eigenvals(A, vecs)
Eigenvals(A, B, vecs)
Parameters
A, B
-
square matrices of real or complex numbers
vecs
(optional) name to be assigned the matrix of eigenvectors
Description
Important: The command Eigenvals has been deprecated. Use the superseding commands LinearAlgebra[Eigenvalues] and LinearAlgebra[Eigenvectors] instead.
Eigenvals(A) returns an array of the eigenvalues of A. The eigenvalues are computed by the QR method. The matrix is first balanced and transformed into upper Hessenberg form. Then the eigenvalues (eigenvectors) are computed.
If an optional parameter vecs (which must be an unassigned name) is supplied, the eigenvectors are returned in an n by n array assigned to the name vecs, such that the ith column is the ith eigenvector corresponding to the ith eigenvalue.
If the ith eigenvalue is complex and the (i+1)th eigenvalue is its complex conjugate, then the ith and (i+1)th columns in the eigenvector array contain the real and imaginary parts of the eigenvector corresponding to the ith eigenvalue. In this case, the real and imaginary components of the eigenvector corresponding to the (i+1)th eigenvalue are comprised respectively of the ith column and the negation of the (i+1)th column of the eigenvector array.
Note that in the two argument form, vecs must be unassigned, otherwise it will taken to be the input for the generalized problem of the three argument form (i.e., the argument B in the second calling sequence above). For multiple calls using the same name for vecs, enclose the name in single quotes.
If the matrix is symmetric then the routine will handle the matrix specially (using a faster algorithm).
This routine also handles the generalized eigenvalue problem: find eigenvalues and eigenvectors L and X such that where A and B are square matrices of the same dimensions.
The function Eigenvals itself is inert. To actually compute the eigenvalues and eigenvectors, the user must evaluate the inert function in the floating point domain, by evalf(Eigenvals(A)).
Examples
Note: If we did not unassign vecs, the following command would be interpreted as a generalized eigenvalue problem.
See Also
LinearAlgebra[Eigenvalues], LinearAlgebra[Eigenvectors]
Download Help Document