Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry[evalDG] - evaluate a DifferentialGeometry expression
Calling Sequence
evalDG(T)
Parameters
T
-
a linear combination of vectors, differential forms or tensors defining using +, -, * for scalar multiplication, &w for wedge product, &t for tensor product, and &s for the symmetric tensor product
Description
The command evalDG provides a simple and efficient way for creating vector files, differential forms and tensors for subsequent calculations with the DifferentialGeometry package.
Note that Maple may perform simplifications before passing the arguments to evalDG, and these simplifications may result in an incorrect parsing of the input to evalDG. In particular, if, for example, X is a vector field, then evalDG(0*X) will return the scalar 0 and not the zero vector. To define a zero object, use 0 &mult evalDG(X) or the Tools command DGzero.
This command is part of the DifferentialGeometry package, and so can be used in the form evalDG(...) only after executing the command with(DifferentialGeometry). It can always be used in the long form DifferentialGeometry:-evalDG.
Examples
Define a 4 dimensional manifold M with coordinates [x, y, z, t].
Example 1.
Create some vectors.
Example 2.
Create a differential form.
Example 3.
Create some tensors.
Example 4.
Note the difference between the following two calls to evalDG.
See Also
DifferentialGeometry, Tools, &plus, DGzero, DGzip
Download Help Document