Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[CovariantDerivative] - calculate the covariant derivative of a tensor field with respect to a connection
Calling Sequences
CovariantDerivative(T, C1, C2)
Parameters
T - a tensor field
C1 - a connection
C2 - (optional) a second connection, needed when the tensor T is a mixed tensor defined on a vector bundle E -> M
Description
Let M be a manifold, let nabla be a linear connection on the tangent bundle of M, and let T be a tensor field on M. Then the covariant derivative of T with respect to nabla is nabla(T) = nabla_{E_i}(T) &t theta^i, where the vector fields E_1, E_2, ..., E_n define a local frame on M with dual coframe theta_1, theta_2, ..., theta_n. The tensor nabla_{E_i}(T) is the directional covariant derivative of T with respect to nabla in the direction of E_i. The definition of the covariant derivative for sections of a vector bundle E -> M and for mixed tensors on E is similar.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CovariantDerivative(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CovariantDerivative.
Examples
Example 1.
First create a 2 dimensional manifold M and define a connection on the tangent space of M.
Define some tensor fields and compute their covariant derivatives with respect to C1.
To obtain a directional covariant derivative in the direction of a vector field X from the covariant derivative, contract the last index of the covariant derivative against the vector field.
Example 2.
Define a frame on M and use this frame to specify a connection on the tangent space of M.
Define some tensor fields and compute their covariant derivatives with respect to C2.
Example 3.
First create a rank 3 vector bundle E on M and define a connection on E.
To covariantly differentiate a mixed tensor on E, a connection on M is also needed.
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], Connection, ContractIndices, CurvatureTensor, Physics[Riemann], DirectionalCovariantDerivative
Download Help Document