Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
JetCalculus[ProjectedPullback] - pullback a differential bi-form of type (r, s) by a transformation to a differential bi-form of type (r, s)
Calling Sequences
ProjectedPullback(Phi, omega)
Parameters
Phi - a transformation between two jet spaces Phi
omega - a differential bi-form of type (r, s) defined on the range jet space of Phi
Description
Every differential form on a jet space can be expressed as a sum of wedge products of 1-forms on M and contact 1-forms. A differential form omega is called a bi-form of degree (r, s) if it is a sum of wedge products of r 1-forms on M and s contact 1-forms. Alternatively, omega is of type (r, s) if omega(X_1, X_2, ... X_(r + s)) = 0 whenever more than r of the vector fields X_i are total vector fields or more than s of the vector fields X_i are vertical vector fields on J^k(E) ->M. The non-negative integer r is called the horizontal degree of omega. The non-negative integer s is called the vertical degree of omega.
Let E -> M and F -> N be two fiber bundles with dim(M) = m and dim(N) = n and let Phi: J^k(E) -> J^l(F) be a transformation. If Phi is the prolongation of a projectable transformation from E to F and omega is a differential bi-form of type (r, s) on J^l(F), then the pullback Phi^*(omega) is a differential bi-form of type (r, s) on J^k(E)-- that is, Phi^* is bi-degree preserving. In this special case where Phi is the prolongation of a projectable transformation, the pullback of a differential bi-form can be computed using the Pullback command found in the DifferentialGeometry package.
Suppose now that Phi: J^k(E) -> J^l(F) is the prolongation of a point transformation, a contact transformation, a differential substitution or a generalized differential substitution. (See AssignTransformationType for the definitions of these different types of transformations.) Then if omega is a differential bi-form of type (r, s) on J^l(F) the pullback Phi^*(omega) = eta_0 + eta_0 + eta_0 + ... where eta_i is a differential bi-form of type (r - i, s + i) on J^k(E). In these cases the command ProjectedPullback(Phi, omega) returns the type (r, s) bi-form eta_0.
Use ProjectedPullback to transform a Lagrangian bi-form to a new Lagrangian bi-form using any of the transformations listed in the previous bullet.
The command ProjectedPullback is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form ProjectedPullback(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-ProjectedPullback(...).
Examples
First initialize several different jet spaces over bundles E1 -> M1, E2 -> M2, E3 -> M3. The dimension of the base spaces are dim(M1) = 2, dim(M2) = 1, dim(M3) = 3.
Example 1.
Define a transformation Phi1: E1 -> E2. This transformation is a projectable transformation and therefore pullbacks by the prolongation of Phi1 can be calculated directly using the Pullback command.
Pullback the contact 1-form Cv[1] on J1^(E2) to a contact form on J1^(E1)-- this can be done with either the Pullback command or the ProjectedPullback command.
Example 2
Define a point transformation Phi2: E1 -> E3 and prolong it to a transformation J^1(E1) -> J^1(E3).
Calculate the projected pullback of the type (1, 0) form Dp.
Calculate the projected pullback of the type (1, 1) form Dp ^ Cv[0].
To illustrate the definition of the projected pullback we re-derive this result using the usual Pullback command.
First convert omega from a bi-form to a form theta1.
Then pullback theta1 using prPhi2.
Then convert theta2 back to a bi-form and take the type [1, 1] part.
Example 3
Define a differential substitution Phi3: J^2(E2) -> E1 and prolong it to a transformation J^2(E3) -> J^2(E1).
Calculate the projected pullback of the type (1, 0) form 2*Dx + 3*Dy.
Calculate the projected pullback of the type (1, 0) form Cu[0, 0].
See Also
DifferentialGeometry, JetCalculus, DGinfo, Prolong, Pullback, PushforwardTotalVector, Transformation
Download Help Document