Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[regularsp] - compute the regular singular points of a second order non-autonomous linear ODE
Calling Sequence
regularsp(des, ivar, dvar)
Parameters
des
-
second order linear ordinary differential equation or its list form
ivar
indicates the independent variable when des is a list with the ODE coefficients
dvar
indicates the dependent variable, required only when des is an ODE and the dependent variable is not obvious
Description
Important: The regularsp command has been deprecated. Use the superseding command DEtools[singularities], which computes both the regular and irregular singular points, instead.
The regularsp command determines the regular singular points of a given second order linear ordinary differential equation. The ODE could be given as a standard differential equation or as a list with the ODE coefficients (see DEtools[convertAlg]). Given a linear ODE of the form
p(x) y''(x) + q(x) y'(x) + r(x) y(x) = 0, p(x) <> 0, p'(x) <> 0
a point alpha is considered to be a regular singular point if
1) alpha is a singular point,
2) limit( (x-alpha)*q(x)/p(x), x=alpha ) = 0 and
limit( (x-alpha)^2*r(x)/p(x), x=alpha ) = 0.
The results are returned in a list. In the event that no regular singular points are found, an empty list is returned.
Examples
An ordinary differential equation (ODE)
Warning, DEtools[regularsp] has been superseded by DEtools[singularities]
The coefficient list form
You can convert convert an ODE to the coefficient list form using DEtools[convertAlg] form
See Also
DEtools, DEtools[convertAlg], DEtools[indicialeq], DEtools[singularities]
Download Help Document