PuiseuxSeries - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


MultivariatePowerSeries

  

PuiseuxSeries

  

create a Puiseux series

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

PuiseuxSeries(g, X, U, R, e)

PuiseuxSeries(g, mp, e)

Parameters

g

-

polynomial, rational function, or power series generated by this package

X

-

(optional) list of ordered variables for the Puiseux series

U

-

(optional) list of ordered variables for the power series

R

-

(optional) list of grevlex positive rational rays

e

-

(optional) list of equations representing the exponents of a monomial multiplying the Puiseux series

mp

-

list of equations representing the change of variables to be applied to g

Description

• 

The PuiseuxSeries command is used to create an object representing a Puiseux series.

• 

A Puiseux series is a power series in rational powers of the variables. More precisely:

– 

Let  and  be ordered lists of variables.

– 

Let  be a list of  grevlex-positive -dimensional rational vectors.

– 

Let  be a point in .

– 

Let  be a multivariate power series in  with homogeneous components .

  

For any  in  and any list , we write  for . Moreover, we write  for the list  of  products of powers of the variables in . Then  is a Puiseux series, and every Puiseux series can be written in this way. This can be understood as evaluating  at  and then multiplying the result by .

• 

We call  the internal power series of the Puiseux series ;  the variable order of ;  the variable order of ; and  the rays of . The rays generate the cone containing the support of , meaning the set of exponent vectors of  that occur in  with a nonzero coefficient, as in the paper by Monforte and Kauers (see References). The vertex of this cone is .

• 

The calling sequence PuiseuxSeries(g, X, U, R, E) creates an object representing , where:

– 

g is a polynomial in , or a formal multivariate power series in ,

– 

R is a list of grevlex positive -dimensional rays contained in ,

– 

E is a list of the form  with  in .

• 

The calling sequence PuiseuxSeries(g, mp, e) creates an object representing a Puiseux series obtained by substituting the equations in mp into g. The list mp must have one equation for each of the variables in g.

• 

When using the MultivariatePowerSeries package, do not assign anything to the variables occurring in the power series, Puiseux series, and univariate polynomials over these series. If you do, you may see invalid results.

Examples

Create a Puiseux series, determine its inverse, multiply them and find its truncation to homogeneous degree 15.

(1)

(2)

(3)

(4)

(5)

Note that truncating a Puiseux series truncates its inner power series: the terms are homogeneous in the variables  of the inner power series, but not necessarily in the variables  of the Puiseux series itself.

We can also compute the inverse  by specifying the rational function that is the inverse of the polynomial  and the appropriate E.

(6)

(7)

(8)

(9)

Create a Puiseux series with the expression  as internal power series.

(10)

(11)

(12)

(13)

If any of the vectors in R or any of the exponent vectors in mp are not grevlex greater than zero, an error is signaled.

(14)

Error, (in MultivariatePowerSeries:-PuiseuxSeries) all the rays in [[1, 0], [-1, 1]] must be grevlex([x, y]) positive

(15)

Error, (in MultivariatePowerSeries:-PuiseuxSeries) all the rays in [[1/4, 0], [-5, -5]] must be grevlex([x, y]) positive

References

  

Monforte, A.A., & Kauers, M. "Formal Laurent series in several variables." Expositiones Mathematicae. Vol. 31 No. 4 (2013): 350-367.

Compatibility

• 

The MultivariatePowerSeries[PuiseuxSeries] command was introduced in Maple 2023.

• 

For more information on Maple 2023 changes, see Updates in Maple 2023.

See Also

Inverse

MultivariatePowerSeries

Truncate

 


Download Help Document