Content
inert content function
Primpart
inert primitive part function
Calling Sequence
Parameters
Description
Examples
Content(a, x, 'pp')
Primpart(a, x, 'co' )
a
-
multivariate polynomial in x
x
(optional) name or set or list of names
pp
(optional) unevaluated name
co
Content and Primpart are placeholders for a content and primitive part of a polynomial over a coefficient domain. They are used in conjunction with mod and evala as described below.
The calls Content(a, x) mod p and Primpart(a, x) mod p compute the content and primitive part of a respectively modulo the prime integer p. The argument a must be a multivariate polynomial over the rationals or over a finite field specified by RootOfs. See content for more information.
The calls evala(Content(a,x)) and evala(Primpart(a,x)) compute a content and a primitive part of a respectively over a coefficient domain which may include algebraic numbers and algebraic functions. The polynomial a must be a multivariate polynomial with algebraic number (or function) coefficients specified by RootOfs or radicals. See evala,Content for more information.
The optional arguments 'pp' and 'co' are assigned a/Content(a) and a/Primpart(a) respectively, computed over the appropriate coefficient domain.
Contentxy+4+y2+4,xmod5
y+4
Primpartxy+4+y2+4,xmod5
x+y+1
a≔5x3+3y2
Contenta,xmod11
1
Primparta,x,c1mod11
x3+5y2
c1
5
p≔expandtsqrt2x+1y−1sqrt2
p≔t2xy−tx+ty−t22
evalaPrimpartp,y
−1+2y
r≔RootOfx3+x+1
r≔RootOf_Z3+_Z+1
q≔evalaExpandy−rx+r2+1
q≔RootOf_Z3+_Z+12y−RootOf_Z3+_Z+1x+xy+y+1
evalaContentq,x,q1
y−RootOf_Z3+_Z+1
q1
RootOf_Z3+_Z+12+x+1
See Also
content
evala
mod
primpart
RootOf
Download Help Document