Interpolation[Kriging]
GenerateSpatialData
generate a spatially correlated data set
Calling Sequence
Parameters
Description
Examples
Compatibility
GenerateSpatialData(variogram)
GenerateSpatialData(variogram,n,options)
variogram
-
a supported variogram model
n
(optional) the (approximate) number of points generated. The default value is 30.
options
(optional) keyword option of the form grid=truefalse or dimension=d. If grid is set to true, the generated data points will be equally spaced along each dimension (default: false). The dimension option sets the dimension of the points to be generated (default: 2).
The GenerateSpatialData command takes a variogram and generates a set of points and associated data reflective of that variogram model. These points and data can then be used to experiment with, or demonstrate, Kriging interpolation.
If the grid=true option is given, then the points are located in a square d-dimensional grid, at coordinates equally spaced between 0 and 1. As a consequence, there will be kd points in total, for some k. Maple chooses k as n1d; consequently, the number of points generated may be smaller than n. For example, if d has its default value of 2, then the number of points will be reduced to the largest perfect square that is not greater than n.
If the grid=true option is not given, then the points are uniformly randomly selected from the d-dimensional unit cube. In this case, exactly n points are generated.
The data set is returned as an expression sequence of a list of lists representing the points, and a Vector of values at those points.
We generate some points in two dimensions and associated data.
points1,data1≔Interpolation:-Kriging:-GenerateSpatialData⁡Spherical⁡1,10,1
points1,data1≔0.8147236863931790.7060460880196090.9057919370756190.03183284637742070.1269868162935060.2769229849608900.9133758561390190.04617139063115390.6323592462254100.09713178123584750.09754040499940950.8234578283272930.2784982188670480.6948286229758170.5468815192049840.3170994800608610.9575068354342980.9502220488383550.9648885351992770.0344460805029088⋮⋮30 × 2 Matrix,−1.313178883098403.78399452938772−4.079067475567432.810336570210773.071599080823360.128958765233152−3.217372722382440.7072451657106540.08778773037919770.937296621856632⋮30 element Vector[column]
These can be used to demonstrate Kriging interpolation.
k1≔Interpolation:-Kriging⁡points1,data1
k1≔Krⅈgⅈng ⅈntⅇrpolatⅈon obȷⅇct wⅈth 30 samplⅇ poⅈntsVarⅈogram: Sphⅇrⅈcal(1.25259453854473,13.6487615617241,.5525536774)
SetVariogram⁡k1,Spherical⁡1,10,1
Krⅈgⅈng ⅈntⅇrpolatⅈon obȷⅇct wⅈth 30 samplⅇ poⅈntsVarⅈogram: Sphⅇrⅈcal(1,10,1)
ComputeGrid⁡k1,0..1,0..1,0.1,output=plot
We now generate some points in a three-dimensional grid and associated data.
points2,data2≔Interpolation:-Kriging:-GenerateSpatialData⁡RationalQuadratic⁡0.1,10,4,216,dimension=3,grid=true
points2,data2≔0.0.0.0.2000000000000000.0.0.4000000000000000.0.0.6000000000000000.0.0.8000000000000000.0.1.0.0.1.0.2000000000000000.0.8000000000000000.2000000000000000.0.6000000000000000.2000000000000000.0.4000000000000000.2000000000000000.⋮⋮⋮216 × 3 Matrix,2.390446540628481.11967338802618−0.597998916705892−0.970439788762183−2.56120370929777−5.11629230224110−3.79584221975687−0.6587311735189990.5699971228084112.30400557699460⋮216 element Vector[column]
k2≔Interpolation:-Kriging⁡points2,data2
k2≔Krⅈgⅈng ⅈntⅇrpolatⅈon obȷⅇct wⅈth 216 samplⅇ poⅈntsVarⅈogram: Sphⅇrⅈcal(1.60346801501628,21.7345339575552,.8)
SetVariogram⁡k2,RationalQuadratic⁡0.1,10,4
Krⅈgⅈng ⅈntⅇrpolatⅈon obȷⅇct wⅈth 216 samplⅇ poⅈntsVarⅈogram: RatⅈonalQuaⅆratⅈc(.1,10,4)
plots:-implicitplot3d⁡k2⁡x,y,z=Statistics:-Median⁡data2,x=0..1,y=0..1,z=0..1,grid=8,8,8
The Interpolation[Kriging][GenerateSpatialData] command was introduced in Maple 2018.
For more information on Maple 2018 changes, see Updates in Maple 2018.
See Also
ComputeGrid
Kriging
SetVariogram
Download Help Document