IsMatrixShape - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[NumericalAnalysis]

  

IsMatrixShape

  

Check whether a matrix is a certain shape or not

 

Calling Sequence

Parameters

Description

Notes

Examples

Calling Sequence

IsMatrixShape(A, shape)

Parameters

A

-

Matrix

shape

-

name; must be one of diagonal, strictlydiagonallydominant, diagonallydominant, hermitian, positivedefinite, symmetric, triangular[upper], triangular[lower], or tridiagonal

Description

• 

The IsMatrixShape command verifies whether the matrix A is a certain "shape".

• 

The only types of "shapes" that the IsMatrixShape command can verify are:

– 

Diagonal : shape = diagonal

– 

Strictly diagonally dominant : shape = strictlydiagonallydominant

– 

Diagonally dominant : shape = diagonallydominant

– 

Hermitian : shape = hermitian

– 

Positive definite : shape = positivedefinite

– 

Symmetric : shape = symmetric

– 

Upper or lower triangular : shape = triangular[upper] or shape = triangular[lower], respectively

– 

Tridiagonal : shape = tridiagonal

Notes

• 

If neither upper nor lower is specified, the triangular option defaults to triangular[upper].

• 

The Student[NumericalAnalysis] subpackage's definition of positive definiteness is as follows.

– 

A complex n-by-n matrix A is positive definite if and only if A is Hermitian and for all n-dimensional complex vectors v, we have 0<vH·A·v, where  denotes the real part of a complex number.

– 

A real n-by-n matrix A is positive definite if and only if A is symmetric and for all n-dimensional real vectors v, we have 0<vT·A·v.

• 

To check another "shape" that is not available with the Student[NumericalAnalysis][IsMatrixShape] command see the general IsMatrixShape command.

Examples

withStudentNumericalAnalysis&colon;

AMatrix2&comma;1&comma;0&comma;0&comma;1&comma;2&comma;1&comma;0&comma;0&comma;1&comma;2&comma;1&comma;0&comma;0&comma;1&comma;2

A2−100−12−100−12−100−12

(1)

BMatrix1&comma;0&comma;0&comma;0&comma;1&comma;2&comma;0&comma;0&comma;1&comma;1&comma;3&comma;0&comma;1&comma;1&comma;1&comma;4

B−1000−12001−1−30−11−14

(2)

CMatrix3&comma;I&comma;1&comma;0&comma;I&comma;4&comma;2I&comma;0&comma;1&comma;2I&comma;5&comma;1&comma;0&comma;0&comma;1&comma;4

C3−I10I42I012I510014

(3)

IsMatrixShapeA&comma;diagonal

false

(4)

IsMatrixShapeA&comma;strictlydiagonallydominant

false

(5)

IsMatrixShapeA&comma;diagonallydominant

true

(6)

IsMatrixShapeC&comma;hermitian

true

(7)

IsMatrixShapeA&comma;positivedefinite

true

(8)

IsMatrixShapeB&comma;positivedefinite

false

(9)

IsMatrixShapeC&comma;positivedefinite

true

(10)

IsMatrixShapeA&comma;symmetric

true

(11)

IsMatrixShapeB&comma;triangularupper

false

(12)

IsMatrixShapeB&comma;triangular

false

(13)

IsMatrixShapeLinearAlgebra:-TransposeB&comma;triangular

true

(14)

IsMatrixShapeB&comma;triangularlower

true

(15)

IsMatrixShapeA&comma;tridiagonal

true

(16)

See Also

Student[NumericalAnalysis]

Student[NumericalAnalysis][ComputationOverview]