 ShowIncomplete - Maple Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : Education : Student Packages : Calculus 1 : Single Stepping : Student/Calculus1/ShowIncomplete

Student[Calculus1]

 ShowIncomplete
 show the incomplete subproblems of a problem or problems Calling Sequence ShowIncomplete(expr, fullopt, dataopt) Parameters

 expr - (optional) algebraic or algebraic equation; select the problem(s) to show fullopt - (optional) $\mathrm{BooleanOpt}\left(\mathrm{full}\right)$; select whether to show all incomplete subproblems or only subproblems that have not been started dataopt - (optional) $\mathrm{BooleanOpt}\left(\mathrm{data}\right)$; select whether to display results using printed output or to return the results as data Description

 • The ShowIncomplete command displays the incomplete subproblems of a single problem or of all problems from the current Maple session.
 • If the dataopt parameter is not given, or is given as data = false, the display is accomplished using calls to print; the value returned by ShowIncomplete is NULL.  Thus, the history variables, %, %%, and %%%, are not modified by this command.  This is the default.
 If the datatopt parameter is given as either data or data=true, this routine returns an expression sequence of lists, giving the problem data for each relevant subproblem.
 • Each subproblem of a problem, which has been entered into the Calculus1 system using a call to Rule or Hint, is assigned a subproblem label.  These labels are of the form "%" + operation name + integer, where operation name is one of Diff, Int, or Limit, corresponding to the calculus operation type of the problem, for example, %Diff2.
 As you solve a problem by applying rules using the Rule command, subproblems may be created.  For example, the application of the sum rule for differentiation to an expression of the form $\frac{{ⅆ}}{{ⅆ}x}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left(f\left(x\right)+g\left(x\right)\right)$ creates two new subproblems, $\frac{{ⅆ}}{{ⅆ}x}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}f\left(x\right)$ and $\frac{{ⅆ}}{{ⅆ}x}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}g\left(x\right)$.
 Once a subproblem has been completed, its value is substituted into the internal representation of the problem and the corresponding subproblem label is cleared.
 • You can use the fullopt option to determine whether all subproblems are displayed (full = true or full) or only those subproblems that do not have subproblems are displayed (full = false).  The default is full = false.
 • If the parameter expr is omitted, the incomplete subproblems of the current problem are displayed.  To designate a problem the current problem, create a new problem (see Rule or Hint) or use the GetProblem command.
 • If expr is a positive integer, the incomplete subproblems of the corresponding problem are displayed.
 • If expr is a subproblem label, the incomplete subproblems of the subproblem with the label expr are displayed. The subproblem referenced by expr need not be a subproblem of the current problem.
 • If expr is the keyword all, the incomplete subproblems of all problems from the current session are displayed.  Note: Problems that have been cleared by a call to Clear are not displayed.
 • If expr is the output from a previous call to Rule or GetProblem (with the internal option), or the left-hand side of such output, the current state of that problem is displayed.
 • Maple returns an error if you attempt to display a problem that has been cleared by a call to the package routine Clear.
 • Note: Treat subproblem labels as temporary objects because the application of a rule to a problem can change the underlying problem representation, and hence the subproblem labels.  It is recommended that you call ShowIncomplete to verify the value of a label before passing it to a command.
 • This command does not change which problem is designated the current problem. Examples

 > $\mathrm{with}\left(\mathrm{Student}\left[\mathrm{Calculus1}\right]\right):$
 > $\mathrm{infolevel}\left[\mathrm{Student}\left[\mathrm{Calculus1}\right]\right]≔1:$
 > $\mathrm{Understand}\left(\mathrm{Diff},\mathrm{chain}\right)$
 ${\mathrm{Diff}}{=}\left[{\mathrm{chain}}\right]$ (1)
 > $\mathrm{Rule}\left[\mathrm{*}\right]\left(\mathrm{Diff}\left({x}^{2}\mathrm{sin}\left({x}^{2}+\mathrm{exp}\left(x\right)\right),x\right)\right)$
 Creating problem #1
 $\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right){=}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}\right){}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){+}{{x}}^{{2}}{}\left(\genfrac{}{}{0}{}{\frac{{ⅆ}}{{ⅆ}{\mathrm{_X0}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{sin}{}\left({\mathrm{_X0}}\right)}{\phantom{{\mathrm{_X0}}{=}{{x}}^{{2}}{+}{{ⅇ}}^{{x}}}}{|}\genfrac{}{}{0}{}{\phantom{\frac{{ⅆ}}{{ⅆ}{\mathrm{_X0}}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{sin}{}\left({\mathrm{_X0}}\right)}}{{\mathrm{_X0}}{=}{{x}}^{{2}}{+}{{ⅇ}}^{{x}}}\right){}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)$ (2)
 > $\mathrm{Rule}\left[\mathrm{sin}\right]\left(\right)$
 $\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right){=}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}\right){}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){+}{{x}}^{{2}}{}{\mathrm{cos}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)$ (3)
 > $\mathrm{Rule}\left[\mathrm{+}\right]\left(\right)$
 $\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right){=}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}\right){}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){+}{{x}}^{{2}}{}{\mathrm{cos}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){}\left(\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}\right){+}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{exp}{}\left({x}\right)\right)$ (4)
 > $\mathrm{Rule}\left[\mathrm{+}\right]\left(\mathrm{Int}\left({x}^{3}+\mathrm{exp}\left(x\right),x\right)\right)$
 Creating problem #2
 ${\int }\left({{x}}^{{3}}{+}{{ⅇ}}^{{x}}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{=}{\int }{{x}}^{{3}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{+}{\int }{{ⅇ}}^{{x}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}$ (5)
 > $\mathrm{ShowIncomplete}\left(\mathrm{data}\right)$
 $\left[{\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Int2}}\right]\right){,}{\int }{{x}}^{{3}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}\right]{,}\left[{\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Int3}}\right]\right){,}{\int }{{ⅇ}}^{{x}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}\right]$ (6)
 > $\mathrm{ShowIncomplete}\left(1,\mathrm{full}\right)$
 ${\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff1}}\right]\right){=}\left(\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right)\right){=}{\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff2}}\right]\right){}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){+}{{x}}^{{2}}{}{\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff3}}\right]\right)\right)$
 ${\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff2}}\right]\right){=}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}\right)$
 ${\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff3}}\right]\right){=}\left(\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{\mathrm{sin}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){=}{\mathrm{cos}}{}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){}{\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff5}}\right]\right)\right)$
 ${\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff5}}\right]\right){=}\left(\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{+}{{ⅇ}}^{{x}}\right){=}{\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff6}}\right]\right){+}{\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff7}}\right]\right)\right)$
 ${\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff6}}\right]\right){=}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}\right)$
 ${\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Diff7}}\right]\right){=}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{exp}{}\left({x}\right)$ (7)
 > $\mathrm{Rule}\left[\mathrm{^}\right]\left(\mathrm{GetProblem}\left(\mathrm{internal}\right)\right)$
 ${\int }\left({{x}}^{{3}}{+}{{ⅇ}}^{{x}}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{=}\frac{{{x}}^{{4}}}{{4}}{+}{\int }{{ⅇ}}^{{x}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}$ (8)
 > $\mathrm{ShowIncomplete}\left(\right)$
 ${\mathrm{Typesetting}}{:-}{\mathrm{_Hold}}{}\left(\left[{\mathrm{%Int3}}\right]\right){=}{\int }{{ⅇ}}^{{x}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}$ (9)

 See Also