 EuclideanMinimumSpanningTree - Maple Help

GraphTheory[GeometricGraphs]

 EuclideanMinimumSpanningTree
 construct a Euclidean minimum spanning tree
 GeometricMinimumSpanningTree
 construct a minimum spanning tree for specified norm Calling Sequence EuclideanMinimumSpanningTree( P, opts ) GeometricMinimumSpanningTree( P, norm, opts ) Parameters

 P - Matrix or list of lists representing set of points norm - positive number, infinity, or Euclidean opts - (optional) one or more options as specified below Options

 • method : one of Kruskal or Prim.
 Specifies the algorithm to use in constructing the minimum spanning tree. The default is Kruskal's algorithm.
 • triangulation : list of three-element lists.
 Supply a previously computed Delaunay triangulation of P. The input must be a valid Delaunay triangulation in the format returned by ComputationalGeometry[DelaunayTriangulation]: a list of three-element lists of integers, representing triangles in a triangulation of P.
 • vertices : list of integers, strings or symbols
 Specifies the vertices to be used in the generated graph.
 • weighted : true or false
 If weighted=true, the result is a weighted graph whose edge weights correspond to the distance between points using the specified norm. Default is false. Description

 • The EuclideanMinimumSpanningTree(P, opts) command returns a minimum spanning tree for the graph generated from the point set P.
 • The GeometricMinimumSpanningTree(P, norm, opts) command returns a minimum spanning tree for the graph generated from the point set P using the norm norm.
 • The parameter P must be a Matrix or list of lists representing a set of points.
 • The parameter norm must be a positive number or one of the symbols Euclidean or infinity. This specifies the norm to be used in computing distances. Definitions

 • Let $P$ be a set of points in $n$ dimensions, let $p$ and $q$ be arbitrary points from $P$, and let $\mathrm{dist}\left(p,q\right)$ be the Euclidean distance between $p$ and $q$.
 • The Euclidean minimum spanning tree is simply a minimum-weight spanning tree for the complete weighted graph on $P$ with the weight of the edge between points $p$ and $q$ defined to be $\mathrm{dist}\left(p,q\right)$.
 • For any norm $\mathrm{\rho }$ on $P$, the minimum spanning tree for norm $\mathrm{\rho }$ is a minimum-weight spanning tree for the complete weighted graph on $P$ with the weight of the edge between points $p$ and $q$ defined to be $\mathrm{\rho }\left(p-q\right)$.
 • The Euclidean minimum spanning tree has the following relationships with other graphs:
 The Euclidean minimum spanning tree on P is a subgraph of the relative neighborhood graph on P.
 The Euclidean minimum spanning tree on P is a subgraph of the Urquhart graph on P. Examples

Generate a set of random two-dimensional points and draw the Euclidean minimum spanning tree.

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$
 > $\mathrm{with}\left(\mathrm{GeometricGraphs}\right):$
 > $\mathrm{points}≔\mathrm{LinearAlgebra}:-\mathrm{RandomMatrix}\left(60,2,\mathrm{generator}=0..100.,\mathrm{datatype}=\mathrm{float}\left[8\right]\right)$
 ${\mathrm{points}}{≔}\begin{array}{c}\left[\begin{array}{cc}{9.85017697341803}& {82.9750304386195}\\ {86.0670183749663}& {83.3188659363996}\\ {64.3746795546741}& {73.8671607639673}\\ {57.3670557294666}& {2.34399775883031}\\ {23.6234264844933}& {52.6873367387328}\\ {47.0027547350003}& {22.2459488367552}\\ {74.9213491558963}& {62.0471820220718}\\ {92.1513434709073}& {96.3107262637080}\\ {48.2319624355944}& {63.7563267144141}\\ {90.9441877431805}& {33.8527464913022}\\ {⋮}& {⋮}\end{array}\right]\\ \hfill {\text{60 × 2 Matrix}}\end{array}$ (1)
 > $\mathrm{EMST}≔\mathrm{EuclideanMinimumSpanningTree}\left(\mathrm{points}\right)$
 ${\mathrm{EMST}}{≔}{\mathrm{Graph 1: an undirected weighted graph with 60 vertices and 59 edge\left(s\right)}}$ (2)
 > $\mathrm{DrawGraph}\left(\mathrm{EMST}\right)$ > $\mathrm{DrawGraph}\left(\mathrm{EuclideanMinimumSpanningTree}\left(\mathrm{points},\mathrm{method}=\mathrm{Prim}\right)\right)$ Now draw the rectilinear minimum spanning tree (corresponding to the 1-norm) on the same data.

 > $\mathrm{RMST}≔\mathrm{GeometricMinimumSpanningTree}\left(\mathrm{points},1\right)$
 ${\mathrm{RMST}}{≔}{\mathrm{Graph 2: an undirected weighted graph with 60 vertices and 59 edge\left(s\right)}}$ (3)
 > $\mathrm{DrawGraph}\left(\mathrm{RMST}\right)$  Compatibility

 • The GraphTheory[GeometricGraphs][EuclideanMinimumSpanningTree] and GraphTheory[GeometricGraphs][GeometricMinimumSpanningTree] commands were introduced in Maple 2020.